摘要
对带五次项的非线性Schrdinger方程提出了一个紧致差分格式,使格式的收敛阶达到O(τ2+h4).运用能量的方法证明了离散的守恒律,并证明了差分格式的稳定性与收敛性.数值实验结果验证了理论的证明.
A compact difference scheme is presented for the nonlinear Schrodinger equation involving quintic term , and the convergence of the scheme with order O(τ2 + h4 ) is obtained .The scheme is proved to converse the discrete mass by utilizing the energy method ,and the stability and convergence are also proved .The numerical results have been carried out to confirm the theoretical proof .
出处
《江苏师范大学学报(自然科学版)》
CAS
2014年第2期53-57,共5页
Journal of Jiangsu Normal University:Natural Science Edition