期刊文献+

带五次项的非线性Schrdinger方程的一个紧致差分格式 被引量:3

A compact difference scheme for the nonlinear Schrdinger equation with quintic term
下载PDF
导出
摘要 对带五次项的非线性Schrdinger方程提出了一个紧致差分格式,使格式的收敛阶达到O(τ2+h4).运用能量的方法证明了离散的守恒律,并证明了差分格式的稳定性与收敛性.数值实验结果验证了理论的证明. A compact difference scheme is presented for the nonlinear Schrodinger equation involving quintic term , and the convergence of the scheme with order O(τ2 + h4 ) is obtained .The scheme is proved to converse the discrete mass by utilizing the energy method ,and the stability and convergence are also proved .The numerical results have been carried out to confirm the theoretical proof .
作者 初日辉
出处 《江苏师范大学学报(自然科学版)》 CAS 2014年第2期53-57,共5页 Journal of Jiangsu Normal University:Natural Science Edition
关键词 五次项 SCHRODINGER方程 紧致差分格式 收敛性 稳定性 quintic term Schrodinger equation compact difference scheme convergence stability
  • 相关文献

参考文献5

二级参考文献53

  • 1陈娟,潘小明.带五次项的非线性Schrodinger方程的一个守恒差分格式[J].徐州师范大学学报(自然科学版),2006,24(4):40-43. 被引量:3
  • 2Griffiths D J. Introduction to Quantum Mechanics. Englewood Cliffs, N J: Prentice-Hall, 1995.
  • 3Menyuk C R. Stability of solitons in birefringent optical fibers. J Opt Soc Amer B Opt Phys, 1998, 5:392-402.
  • 4Wadati M, Izuka T, Hisakado M. A coupled nonlinear Schrodinger equation and optical solitons. J Phys Soc Japan, 1992, 61:2241-2245.
  • 5Akrivis G D. Finite difference discretization of the cubic SchrSdinger equation. IMA J Numer Anal, 1993, 13:115-124.
  • 6Chan T, Shen L. Stability analysis of difference schemes for variable coefficient SchrSdinger type equations. SIAM J Numer Anal, 1987, 24:336-349.
  • 7Chang Q, Jia E, Sun W. Difference schemes for solving the generalized nonlinear SchrSdinger equation. J Comput Phys, 1999, 148:397-415.
  • 8Dai W. An unconditionally stable three-level explicit difference scheme for the Schr6dinger equation with a variable coefficient. SIAM J Numer Anal, 1992, 29:174-181.
  • 9Dehghan M, Taleei A. A compact split-step finite difference method dor solving the nonlinear SchrSdinger equations with constant and variable coefficients. Comput Phys Comm, 2010, 181:43-51.
  • 10Ivanauskas F, Radzifinas M. On convergence and stability of the explicit difference method for solution of nonlinear SchrSdinger equations. SIAM J Numer Anal, 1999, 36:1466-1481.

共引文献33

同被引文献5

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部