期刊文献+

生物模板法制备纳米羟基磷灰石去除水体中的三氯生 被引量:3

Removal of triclosan by nano-HAP synthesized by biotemplate technology
原文传递
导出
摘要 以棉花作为生物模板制备出具有棉花形貌的纳米羟基磷灰石(HAP),并将其运用于水体中三氯生的吸附去除研究。采用X射线粉末衍射仪、傅里叶红外、扫描电镜、透射电镜表征了吸附前后HAP的物相组成、官能团、形貌和颗粒尺寸变化。考察了初始pH、时间和温度对HAP吸附三氯生的影响。动力学数据符合准二级动力学模型,颗粒内扩散不是唯一的限速步骤;平衡吸附数据符合Langmuir等温吸附模型;热力学参数吉布斯自由能(ΔG0)、焓变(ΔH0)、熵变(ΔS0)值揭示三氯生吸附至HAP上是一个自发吸热的过程。对比其他吸附剂,HAP具有高吸附量且环境友好的优势。 Hydroxyapatite( HAP) in cotton morphology was synthesized using cotton as bio-template and employed in the removal of triclosan( TCS). The crystal phase,functional group,microstructure and particles of the synthesized HAP and TCS treated HAp powder were characterized by XRD,FTIR,SEM,TEM. The effect of initial pH,contact time and temperature on the removal of TCS by HAP was studied in batch experiment. The kinetic data conformed to the pseudo-secondorder kinetic model. Intraparticle diffusion was not the sole rate-controlling factor. The experimental equilibrium adsorption data fitted well to the Langmuir isotherm model. Thermodynamic parameters such as Gibbs free energy( ΔG0),enthalpy( ΔH0),and entropy( ΔS0) revealed the adsorption of TCS by HAP in cotton morphology was a spontaneous and endothermic process. Compared with other adsorbents,HAP has the advantages of high adsorption capacity and environmentally friendlyness.
出处 《环境化学》 CAS CSCD 北大核心 2014年第6期1018-1026,共9页 Environmental Chemistry
基金 国家自然科学基金(21163023 21307048)资助
关键词 羟基磷灰石 三氯生 吸附 生物模板 Langmuir等温线 热力学 hydroxyapatite trislosan adsorption bio-template Langmuir isotherm model thermodynamics
  • 相关文献

参考文献38

  • 1McAvoy D C, Schatowitz B, Jacob M, et al. Measurement of triclosan in wastewater treatment systems[J]. Environmental Toxicology And Chemistry, 2002, 21(7): 1323-1329.
  • 2Adolfsson-Erici M, Pettersson M, Parkkonen J, et al. Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden[J]. Chemosphere, 2002, 46(9): 1485-1489.
  • 3Hinther A, Bromba C M, Wulff J E, et al. Effects of triclocarban, triclosan, and methyl triclosan on thyroid hormone action and stress in frog and mammalian culture systems[J]. Environ Sci Technol, 2011, 45(12): 5395-5402.
  • 4Heath R J, Rubin J R, Holland D R, et al. Mechanism of triclosan inhibition of bacterial fatty acid synthesis[J]. Journal of Biological Chemistry, 1999, 274(16): 11110-11114.
  • 5Heath R J, Rock C O. Microbiology: A triclosan-resistant bacterial enzyme[J]. Nature, 2000, 406(6792): 145-146.
  • 6Sabaliunas D, Webb S F, Hauk A, et al. Environmental fate of triclosan in the River Aire Basin, UK[J]. Water Research, 2003, 37(13): 3145-3154.
  • 7Sanchez-Prado L, Llompart M, Lores M, et al. Monitoring the photochemical degradation of triclosan in wastewater by UV light and sunlight using solid-phase microextraction[J]. Chemosphere, 2006, 65(8): 1338-1347.
  • 8Morrall D, McAvoy D, Schatowitz B, et al. A field study of triclosan loss rates in river water (Cibolo Creek, TX)[J]. Chemosphere, 2004, 54(5): 653-660.
  • 9Aranami K, Readman J W. Photolytic degradation of triclosan in freshwater and seawater[J]. Chemosphere, 2007, 66(6): 1052-1056.
  • 10Dayan A. Risk assessment of triclosan in human breast milk[J]. Food and chemical toxicology, 2007, 45(1): 125-129.

二级参考文献1

共引文献8

同被引文献21

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部