期刊文献+

基于节点及流量行为特征的P2P流量识别 被引量:3

Identification of P2P Flow Based on Node and Traffic Behavior Characteristics
下载PDF
导出
摘要 由于P2P软件普遍采用动态端口以及负载加密技术,使得基于传输层端口和深度包检测技术的对等网流量识别受到限制。通过对P2P流量的分析发现其两种特性:一是P2P节点具有双面性特征,即P2P节点可以同时上传下载数据;二是P2P流量的正向流与反向流包到达时间间隔方差比始终在一定区间内波动。由此提出基于节点及流量行为特征的P2P流量识别方法,并将其应用于网络流量监测。实验表明:该方法可识别新应用及加密流量,具有客观性,其流识别率为93%,字节识别率为95.5%。 The current P2P software uses dynamic ports and load encryption technology widely so that it limits peer-to-peer network traffic identification, which is based on the transport layer port and deep packet inspection (DPI) technology. Through the P2P traffic a- nalysis,it is found that P2P node has double characteristics:firstly, P2P nodes can upload and also download the data, which means the nodes have duality;secondly ,the variance ratio of forward and reverse flow package of time interval fluctuates within a certain range. Thus a P2P traffic identification method based on nodes and flow behavior characteristics is proposed and applied to network traffic monitoring. The results show that this method can objectively identify new applications and encrypted traffic with 93% flow identification rate and 95.5% byte identification rate.
出处 《济南大学学报(自然科学版)》 CAS 北大核心 2014年第4期265-269,共5页 Journal of University of Jinan(Science and Technology)
基金 国家自然科学基金(61373027) 山东省自然科学基金(ZR2012FM023)
关键词 对等网 流量识别 传输层 流量特征 P2P traffic identication transport layer flow characteristic
  • 相关文献

参考文献12

  • 1鲁刚,张宏莉,叶麟.P2P流量识别[J].软件学报,2011,22(6):1281-1298. 被引量:48
  • 2OHZAHATA S,HAGIWARA Y,TERADA M,et al.A traffic iden-tification method and evaluations for a pure P2P application [ C ]//Proceedings of 2005 Passive and Active Network Measurement(PAM' 05).Berlin:Springer-Verlag,2005:55-68.
  • 3NGUYEN T,ARMITAGE G.A survey of techniques for internet traffic classification using machine learning [ J ].Communications Surveys & Tutorials,IEEE,2008,10(4):56-76.
  • 4李致远,王汝传.一种基于机器学习的P2P网络流量识别方法[J].计算机研究与发展,2011,48(12):2253-2260. 被引量:18
  • 5陈伟,兰巨龙,张建辉,杜锡寿.基于SVM概率输出的P2P流媒体识别法[J].计算机科学,2012,39(10):45-49. 被引量:3
  • 6KARAGIANNIS T,PAPAGIANNAKI K,FALOUTS M.BLINC:mul-tilevel traffic classification in the dark[ C]//ACM SIGCOMM Com-puter Communication Review.New York:ACM,2005:229-240.
  • 7李麟青,杨哲,朱艳琴.一种混合式BitTorrent流量检测方法[J].计算机应用,2011,31(12):3210-3214. 被引量:2
  • 8陈云菁,张赟,陈经涛.基于决策树模型的P2P流量分类方法[J].计算机应用研究,2009,26(12):4690-4693. 被引量:4
  • 9KIM H,CLAFFY K C,FOMENKOV M,et al.Internet traffic clas-sification demystified:myths,caveats,and the best practices [ C ]//Proceedings of the 2008 ACM CoNEXT Conference.New York:ACM,2008:121-132.
  • 10GRINGGOLI F,SALGARELLI L,DUSI M,et al.Gt:picking up the truth from the ground for internet traffic[ J].ACM SIGCOMM Computer Communication Review,2009,39(5):12-18.

二级参考文献72

  • 1赵咏,姚秋林,张志斌,郭莉,方滨兴.TPCAD:一种文本类多协议特征自动发现方法[J].通信学报,2009,30(S1):28-35. 被引量:10
  • 2李伟男,鄂跃鹏,葛敬国,钱华林.多模式匹配算法及硬件实现[J].软件学报,2006,17(12):2403-2415. 被引量:42
  • 3扈立新.P2P流量监控技术分析[J].中国科技信息,2007(9):97-98. 被引量:3
  • 4MADHUKARA, WILLIAMSON C. A longitudinal study of P2P traffic classification [ C ]//Proc of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems. Los Alamitos, CA : IEEE Computer Society, 2006 : 179-188.
  • 5SEN S, SPATSCHECK O, WANG D M. Accurate, scalable in-network identification of P2P traffic using application signatures [ C ]// Proc of the 13th International Conference on World Wide Web. New York: ACM Press, 2004:512-521.
  • 6WANG R, LIU Yang, YANG Y X, et al. Solving the app-level classification problem of P2P traffic via optimized support vector machines [ C ]//Proc of the 6th International Conference on intelligent Systems Design and Applications. Los Alamitos, CA: IEEE Computer Society, 2006:534-539.
  • 7OHZAHATA S, HAGIWARA Y, TERADA M, et al. A traffic identification method and evaluations for a pure P2P application [ C ]//Proc of 2005 Passive and Active Measurement. Berlin: Springer-Verlag , 2005:55-68.
  • 8KANG H J, KIM M S, HONG J W. Streaming media and multimedia conferencing traffic analysis using payload examination [ J ]. ETRI Journal,2004,26(3) :203-217.
  • 9ZANDER S, NGUYEN T, ARMITAGE G. Automated traffic classification and application identification using machine learning [ C ]// Proc of the 30th IEEE Conference on Local Computer Networks Anniversary. 2005:250-257.
  • 10MOORE A W, ZUEV D. Internet traffic classification using Bayesian analysis techniques [ C ]//Proc of the 2005 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems. New York: ACM Press,2005:50-60.

共引文献73

同被引文献20

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部