期刊文献+

属性嵌套计算网格智能算法实现车牌汉字精准识别的设计 被引量:1

License Plate Character Recognition Accuracy Based on Properties Nested Computing Grid Intelligent Algorithms
下载PDF
导出
摘要 设计了环境较差情况下高效精准、辨识汉字的智能车牌识别算法,通过引进属性嵌套计算网格实现了汉字高效辨识的车牌识别算法;算法应用结果表明:算法设计的网格密度与识别率是成正比的,采用的属性嵌套计算网格模型,显著地改进了字符的识别率;将属性计算网格算法与属性嵌套计算网格算法对比可知,采用属性嵌套计算网格算法识别率是98.7%,识别率明显较高;设计算法系统不仅实现了汉字识别的稳定、智能特性,同时表现了抵抗较强外界干扰的特性,这一研究对于智能化汉字识别有明显的借鉴价值。 A case of high--precision environment is poor, intelligent character recognition license plate recognition algorithm, through the intro- duction of property nested grid computing to achieve efficient recognition of license plate character recognition algorithm, the algorithm application re- sults showed that : algorithm design mesh density and recognition rate is proportional ; calculated using the properties of the nested grid model, a signifi- cant improvement of the character recognition rater the attributes and attribute nesting algorithm for computing grid computing grid algorithin compari- son shows, the use of computational grid nested attributes algorithm recognition rate was 98.7 %, significantly higher recognition rate. Design algo- rithms Chinese character recognition system not only to achieve a stable, intelligent features, and strong performance to resist outside interference char- acteristics of intelligent character recognition for this study have significant reference value.
出处 《计算机测量与控制》 北大核心 2014年第6期1918-1921,共4页 Computer Measurement &Control
关键词 计算网格 属性嵌套 识别率 辨识 干扰 computational grid attribute nesting recognition rate identification interference
  • 相关文献

参考文献8

二级参考文献95

  • 1苑玮琦,穆长江,李德胜.一种基于汉字结构特征的车牌照字符分割方法[J].仪器仪表学报,2003,24(z2):472-474. 被引量:11
  • 2张晓方.铁路货车车号自动识别系统的研究与设计[J].哈尔滨铁道科技,1999(1):25-26. 被引量:2
  • 3薛磊,杨晓敏,吴炜,陈默,何小海.一种基于KNN与改进SVM的车牌字符识别算法[J].四川大学学报(自然科学版),2006,43(5):1031-1036. 被引量:21
  • 4潘梅森,荣秋生.基于SOFM神经网络的图像融合二值化方法[J].光学精密工程,2007,15(3):401-406. 被引量:19
  • 5Li Yuanxiang, Ding Xiaoqing. Multiple candidate characters in the post-processing for off-line handwritten Chinese character recognition, info-tech and info-net, 2001 [A]. Proceedings. ICII 2001-Beijing [ C ]. Beijing: 2001 International Conferences, 2001.3,438-443.
  • 6Mitrpanont J L, Limkonglap U. Using contour analysis to improve feature extraction in thai handwritten character recognition systems [ A]. Computer and Information Technology, CIT 2007, the 7th IEEE International Conference[ C]. 2007, 668- 673.
  • 7Chengpu Yu, Mei Xie, Jin Qi. A novel system design of license plate recognition [ A ]. Computational Intelligence and Design, ISCID ' 08, International Symposium[ C ]. 2008.2,114-117.
  • 8Shen-Zheng Wang, Hsi-Jian Lee. Detection and recognition of license plate characters with different appearances[ A]. Intelligent Transportation Systems, Proceedings 2003, IEEE [ C ]. 2003,2, 979-984.
  • 9Wang Dang, Fang Jiali, Wang Xiaofeng. Granular computing-based qualitative criterion cluster and the license plate characters' recognition[ A]. Granular Computing, GrC 2008, IEEE International Conference[ C]. 2008, 602-605.
  • 10Rahman C A, Badawy W. , Radmanesh A. A real time vehicle' s license plate recognition system [ A ]. Proceedings IEEE Conference on Advanced Video and Signal Based Surveillance [ C ]. 2003, 163-166.

共引文献63

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部