期刊文献+

多晶硅定向凝固温度场模拟的研究进展 被引量:1

Research Progress of Temperature Field Simulation in Directional Solidification Process for Multi-crystalline Silicon
下载PDF
导出
摘要 对多晶硅太阳能电池而言,决定其光电转化效率的铸锭晶粒尺寸、晶体缺陷、内应力及杂质的形成与分布等与定向凝固过程的温度场密切相关。因此,为提高多晶硅锭质量必须控制和优化定向凝固过程的温度场。运用数值模拟技术对多晶硅定向凝固温度场进行分析,已被国内外学者广泛应用,获得了有参考价值的模拟结果。结合自身工作,综合分析了多晶硅铸锭缺陷与温度场的关系,总结了多晶硅定向凝固数值模拟中,热导率、加热功率、氩气流动状态、外加磁场及定向凝固系统结构等对温度场的影响,可为多晶硅铸锭的制备及质量改进提供参考。 Ingot grain size,crystal defect,internal stress,formation and distribution of impurity which control photoelectric conversion efficiencies for multi-crystalline silicon solar cell are closely related to the temperature field in directional solidification process.Consequently,control and optimization of temperature field in directional solidification process is the most advantageous to improve quality of multi-crystalline silicon ingot.The temperature field of directional solidification of multi-crystalline silicon is analyzed with the widely used numerical simulation technique by domestic and foreign scholars,and the simulation results have important reference value.The relationship between multi-crystalline silicon ingot defect and temperature field is analyzed by author who is based on the own work.The influence of thermal conductivity,heating power,argon flow state,external magnetic field and directional solidification system structure on temperature field is summarized which will provide reference for improving preparation and quality of multi-crystalline silicon ingot.
出处 《材料导报》 EI CAS CSCD 北大核心 2014年第11期22-26,共5页 Materials Reports
关键词 多晶硅 定向凝固 温度场 数值模拟 multi-crystalline silicon directional solidification temperature field numerical simulation
  • 相关文献

参考文献8

二级参考文献88

共引文献72

同被引文献44

  • 1Kwang Mook Park, Myoung Bok Lee, Sie Young Choi. In- vestigation of surface features for 17. 2% efficiency multi- crystalline silicon solar cells[J]. Solar Energy Mater Solar Cells, 2015,132 : 356.
  • 2Razykov T M, Ferekides C S, Morel D, et al. Solar photo- voltaic electricity: Current status and future prospects ~ J ]. Solar Energy, 2011,85 : 1580.
  • 3Toni Lehmann, Matthias Trempa, Elke Meissner, et al. Laue scanner:A new method for determination of grain orienta- tions and grain boundary types of multicrystalline silicon on a full wafer scale[J]. Acta Mater, 2014,69 : 1.
  • 4Ye Xiaoya, Zou Shuai, Chen Kexun, et al. 18. 45~-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture [J]. Adv Funct Mater, 2014, 24: 6708.
  • 5Ganesh R B, Ryningen B, Syvertsen M, et al. Growth and characterization of multicrystalline silicon ingots by direc- tional solidification for solar cell applications ~J 3- Energy Procedia, 2011,8: 371.
  • 6Qi Xiaofang, Yu Qinghua, Zhao Wenhan, et al. Improved seeded directional solidification process for producing high- efficiency multi-crystalline silicon ingots for solar cellsFJ]. Solar Energy Mater Solar Cells, 2014,130:118.
  • 7盂虹辰.金刚石线锯切割多晶硅片力学性能及其改善[D].南昌:南昌大学,2014.
  • 8Keiichiro Masuko, Masato Shigematsu, Taiki Hashiguchi, et al. Achievement of more than 25~ conversion efficiency with crystalline silicon heterojunction solar cell[J]. IEEE J Photo- voltaics, 2014,4(6) : 1433.
  • 9Mikio Taguchi, Ayumu Yano, Satoshi Tohoda, et al. 24. 7M record efficiency HIT solar cell on thin silicon wafer[J]. IEEE J Photovoltaics, 2014,4(1) : 96.
  • 10Martin A Green, Keith Emery, Yoshihiro Hishikawa, et al. Solar cell efficiency tables (Ver sion 45)[J]. Prog Photovolt Res Appl,2015,23:1.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部