期刊文献+

一种改进的基于加权网络的蛋白质复合物识别算法 被引量:2

Improved Weighted-network Based Algorithm for Predicting Protein Complexes
下载PDF
导出
摘要 不断增长的蛋白质相互作用数据使我们能够采用计算方法预测蛋白质复合物。然而,由于实验条件和技术的限制,现有的PPI网络中包含噪声。为了降低噪声对复合物识别所产生的负面影响,提出了一种改进的名为WPC的算法,用于从加权网络中识别蛋白质复合物。给定一个选定节点,所有邻居节点组成候选集,候选集中节点的邻居节点组成邻居集。对于候选集中的节点,若该节点在候选集与邻居集间的加权比低于设定阈值,则将该点剔除。处理后的候选集被标记为复合物。对于没有包含在任何复合物中的节点,如果节点在某一复合物内的平均加权度超过一个自适应的阈值,则将其补充到该复合物中。对WPC算法和现有的几种经典蛋白质复合物识别算法的性能进行了综合比较。实验结果表明,WPC算法的性能优于几种对比的复合物识别算法。 The increasing amount of protein-protein interaction (PPI) data has enabled us to predict protein complexes.Due to the limitation of experimental conditions and techniques,there is a lot of noise in the PPI networks.To reduce the negative effects of noise on protein complex prediction,a new improved method named WPC (Weighted-network based method for Predicting protein Complexes) was proposed.Given a selected node,candidate set consists of all neighbors of the node and neighbor set consists of neighbors of all nodes in the candidate set.If the weighted ratio of a node between the candidate set and the neighbor set is lower than a threshold,the node is removed from the candidate set.After repeating the process for all nodes in the candidate set,the candidate set is represented as a complex.For a node not being included in any complexes,if its average weighted degree within a complex exceeds a self-adjustment threshold,WPC adds the node to the complex.A comprehensive comparison among the competitive algorithms and WPC was made.Experimental results show that WPC outperforms the state-of-the-art methods.
出处 《计算机科学》 CSCD 北大核心 2014年第6期231-234,共4页 Computer Science
基金 国家自然科学基金(61232001) 湖南省十二五规划课题(XJK011CXJ002)资助
关键词 平均加权度 蛋白质复合物 蛋白质相互作用网络 加权比 Average weighted degree Protein complex Protein-protein interaction network Weighted ratio
  • 相关文献

参考文献14

  • 1Gavin A C,Bosche M,Krause R,et al.Functional organization of the yeast proteome by systematic analysis of protein complexes[J].Nature,2002,415(6868):141-147.
  • 2Puig O,Caspary F,Rigaut G,et al.The tandem affinity purification (TAP) method:a general procedure of protein complex purification[J].Methods,2001,24:218-229.
  • 3Adamcsek B,et al.CFinder:locating cliques and overlapping modules in biological networks[J].Bioinformatics,2006,22(8):1021-1023.
  • 4Enright A,Dongen S,Ouzounis C.An efficient algorithm for large-scale detection of protein families[J].Nucleic Acids Research,2002,30(7):1575-1584.
  • 5Amin M,Shinbo Y,Mihara K,et al.Development and implementation of an algorithm for detection of protein complexes in large interaction networks[J].BMC Bioinformatics,2006,7:207.
  • 6Jiang P,Singh M.SPICi:a fast clustering algorithm for large biological networks[J].Bioinformatics,2010,26(8):1105-1111.
  • 7Liu G,Wong L,Chua H N.Complex discovery from weighted PPI networks[J].Bioinformatics,2009,25:1891-1897.
  • 8Nepusz T,Yu H,Paccanaro A.Detecting overlapping protein complexes in protein-protein interaction networks[J].Nature Methods,2012,9 (5):471-475.
  • 9Gavin A,Aloy P,Grandi P,et al.Proteome survey reveals modularity of the yeast cell machinery[J].Nature,2006,440(7084):631-636.
  • 10Leung H,Xiang Q,Yiu S,et al.Predicting protein complexes from PPI data:a core-attachment approach[J].Journal of Computational Biology,2009,16(2):133-144.

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部