期刊文献+

基于支持向量机的监控视频遮挡树叶检测 被引量:6

Support vector machine based approach for leaf occlusion detection in security surveillance video
下载PDF
导出
摘要 针对安防监控摄像头被树叶遮挡的问题,提出一种基于支持向量机(SVM)的视频树叶遮挡检测算法。该算法利用视频的时域特性,采用累积帧差法实现对视频中疑似树叶区域的分割,提取视频中某一帧图像的整个区域和疑似树叶区域的颜色信息与面积信息作为视频的特征,最后采用支持向量机进行建模并用于视频树叶遮挡的检测。在有限样本前提下,算法准确率能够达到84%。实验结果表明,所提算法对于有树叶遮挡的监控视频能够进行有效识别。 Aiming at the problem that the security surveillance cameras have been hidden by leaves, a leaf occlusion detection algorithm based on Support Vector Machine (SVM) was proposed. The algorithm contains three steps. First, the regions of the leaf existing in the video were segmented. The accumulated frame subtraction method was applied to achieve this purpose. Second, the color and area information of the whole video image and the segmented regions were extracted as the key features. Third, these features were used for modeling and detecting obstacle occlusion by SVM. For all the collected samples, the detection accuracy of this method can reach up to 84%. The experimental results show that the proposed algorithm can detect the leaf occlusion in security surveillance video effectively.
出处 《计算机应用》 CSCD 北大核心 2014年第7期2023-2027,2032,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61375017) 湖北省高等学校优秀中青年科技创新团队计划项目(T201202) 湖北省教育厅科学技术研究计划项目(Q20131108)
关键词 树叶遮挡检测 监控视频 累积帧差 支持向量机 颜色特征 leaf occlusion detection surveillance video accumulated inter-frame subtraction Support Vector Machine(SVM) color feature
  • 相关文献

参考文献12

二级参考文献62

共引文献960

同被引文献46

  • 1邓宝松,高宇,杨冰,吴玲达.一种新的直线特征提取和定位算法[J].计算机工程,2006,32(13):198-199. 被引量:6
  • 2Ribnick E,Atev S,Masoud O,et al.Real-time de- tection of camera tampering[C]//Proceedings of the IEEE International Conference on Video and Signal Based Surveillance,November 22-24,2006,Sydney,Australia.IEEE,2006:10-16.
  • 3Lin Daw-Tung,Wu Chung-Han.Real-time active tampering detection of surveillance camera and im- plementation on digital signal processor[C]//Pro- ceedings of the 2012 Eighth International Confer- ence on Intelligent Information Hiding and Multi- media Signal Processing.IEEE,2012:383-386.
  • 4Saglam A,Temizel A.Real-time adaptive camera tamper detection for video surveillance[C]//Pro- ceedings of the Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance,September 2-4,2009,Genova,Italy.IEEE,2009:430-435.
  • 5Yin Hongpeng,Jiao Xuguo,Luo Xianke,et al.Sift-based camera tamper detection for video sur- veillance[C]//第25届中国控制与决策会议论文集.沈阳:东北大学出版社,2013:665-668.
  • 6Bengio Y.Learning deep architectures for AI[M]// Foundations and Trends in Machine Learning.Hanover,MA:Now Publishers Inc,2009.
  • 7Zhu Ming,Wu Yan.A novel deep model for image recognition[C]//2014 5th IEEE International Con- ference on Software Engineering and Service Science(ICSESS),IEEE,2014:373-376.
  • 8张春霞,姬楠楠,王冠伟.受限波尔兹曼机简介[EB/OL].北京:中国科技论文在线(2013-01-11)[2015-11-14].http://www.paper,edu.cn/release- paper/content/201301-528.
  • 9Lin DT, Wu CH. Real-time active tampering detection of sur- veillance camera and implementation on digital signal processor [C] //8th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2012: 383-386.
  • 10Saglam A, Temizel A. Real-time adaptive camera tamper de- tection for video surveillance [C] //Proceedings of the IEEE International Conference on Advanced Video and Signal based Surveillance, 2009: 430-435.

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部