期刊文献+

连续空间的递归最小二乘行动者—评论家算法 被引量:2

Recursive least-squares actor-critic algorithm in continuous space
下载PDF
导出
摘要 传统的行动者—评论家(actor-critic,AC)算法用在连续空间时,数据利用率低、收敛慢,而现实世界中采样往往需要昂贵的代价,因此提出了一种新的连续空间递归最小二乘AC算法,能够充分利用数据,提高学习预测能力。该方法用高斯径向基函数对连续的状态空间进行编码,评论家部分改用带资格迹的递归最小二乘时间差分方法,而行动者部分用策略梯度方法,在连续动作空间中进行策略搜索。Mountain Car问题的仿真结果表明该算法具有较好的收敛结果。 The traditional actor-critic(AC) algorithms is applied in continuous space,which has low data utilization rate and slow convergence speed,but in the real world,sampling often requires expensive price. So this paper proposed a new recursive least squares AC algorithm of continuous space,which could make full use of the data and improve the learning and predictive abilities. The algorithm used Gaussian radial basis functions to encode the continuous state space. The critic applied to recursive least-squares temporal difference method,and the actor adopted policy gradient to search in the continuous action space. The simulation results of Mountain Car problem show that the proposed algorithm has good convergent results.
出处 《计算机应用研究》 CSCD 北大核心 2014年第7期1994-1997,2000,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61070122 61070223 61373094 60970015) 江苏省自然科学基金资助项目(BK2009116) 江苏省高校自然科学研究项目(09KJA520002) 吉林大学符号计算与知识工程教育部重点实验室资助项目(93K172012K04)
关键词 强化学习 行动者—评论家方法 连续状态动作空间 递归最小二乘 策略梯度 高斯径向基函数 reinforcement learning actor-critic method continuous state and action space recursive least-squares policy gradient Gaussian radial basis functions
  • 相关文献

参考文献12

  • 1BARTO A G, SUTTON R S, ANDERSON C W. Netrronlike adaptive elements that can solve difficult [earning control problems [J ]. IEEE Yrans on Systems, Man and Cybernetics, 1983,13 (5) : 834- 846.
  • 2SUTTON R S, BARTO A G. Reinforcement learning:an introduction [ M ]. Cambridge : MIT Press, 1998.
  • 3WILLIAMS R J. Simple statistical gradient-following algorithms for connectionist reinforcement learning[ J]. Machine Learning, 1992,8 (3) :229-256.
  • 4SUTTON R S, MCALLESTER D, SINGH S, et al. Policy gradient methods for reinforcement learning with function approximation [ C ]// Advances in Neural Information Processing Systems. 1999: 1057- 1063.
  • 5KONDA V R, TSITSIKLIS J N. Actor-critic algorithms [ C ]//Ad- vances in Neural Information Processing Systems. 1999:1008-1014.
  • 6DEGRIS T, PILARSKI P M, SUTTON R S. Model-free reinforcement learning with continuous action in practice [ C]//Proc of American Control Conference. 2012:2177-2182.
  • 7DEGRIS T, WHITE M, SUTTON R S. Off-policy actor-critic[ C]// Proc of the 29th International Conference on Machine Learning. 2012: 457-464.
  • 8BRARTKE S J, BARTO A G. Linear least-squares algorithms for temporal difference learning [ J]. Machine Learning, 1996,22 ( 1-3) :33-57.
  • 9XU Xin, HE Hang-en, HU De-wen. Efficient reinforcement learning using recursive least-squares methods[ J]. Journal of Artificial Intelli- gence Research ,2002,3 6:259- 292.
  • 10王雪松,程玉虎,易建强.一种自适应模糊Actor-Critic学习[J].控制与决策,2006,21(9):1068-1072. 被引量:3

二级参考文献7

  • 1秦斌,吴敏,王欣.模糊神经网络模型混沌混合优化学习算法及应用[J].控制与决策,2005,20(3):261-265. 被引量:5
  • 2Creighton D C,Nahavandi S.Optimizing Discrete Event Simulation Models Using a Reinforcement Learning Agent[A].Proc of Winter Simulation Conf[C].San Diego,2002:1945-1950.
  • 3Ster B.An Integrated Learning Approach to Environment Modeling in Mobile Robot Navigation[J].Neurocomputing,2004,57(1-4):215-238.
  • 4Samejima K,Omori T.Adaptive Internal State Space Construction Method for Reinforcement Learning of a Real-world Agent[J].Neural Networks,1999,12(7):1143-1155.
  • 5Meesad P,Yen G G.Accuracy,Comprehensibility and Completeness Evaluation of a Fuzzy Expert System[J].Int J of Uncertainty,Fuzziness and Knowledge-based Systems,2003,11(4):445-466.
  • 6Lee Y A,Chung T C.A Function Approximation Method for Q-learning of Reinforcement Learning[J].J of KISS:Software and Applications,2004,31(11):1431-1438.
  • 7李晓萌,杨煜普,许晓鸣.基于递阶强化学习的多智能体AGV调度系统[J].控制与决策,2002,17(3):292-296. 被引量:8

共引文献2

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部