期刊文献+

基于快速搜索最佳匹配块的图像修复算法 被引量:6

Novel image inpainting algorithm based on quickly searching optimum matching block
下载PDF
导出
摘要 通过分析Criminisi算法的计算复杂度,得出整个算法的计算复杂度主要取决于其搜索最优匹配块的计算复杂度,且通过分析待修复块优先级的作用,得出整个修复质量与待修复块的优先级密切相关,综合提出了一种QSOMB算法以改善Criminisi算法的缺陷。QSOMB算法一方面采用了一种粗略搜索和精细搜索相结合搜索最优匹配块的算法,可大幅度降低算法的计算复杂度从而节约修复时间,另一方面运用了一种新颖的优先级系数计算方法来确定待修复块的优先级,可得到更为确信的修复效果。通过实验分析可知,相较于Criminisi算法,QSOMB算法是一种有效的且可运用于实践的图像修复算法,其不仅可以确保图像修复后的质量,而且其所需的修复时间更短。 In order to solve disadvantages of the Criminisi algorithm,this paper proposed a novel algorithm named QSOMB algorithm,after analyzing the computation complexity was mainly based on the complexity of searching the best matching block and the quality of the repaired image was almost based on the priority levels of the blocks which was waiting for being repaired.QSOMB algorithm reasonably adopted the both the rough searching and the precise searching together to quickly find the optimum matching block in the image for reducing the computation complexity and saving the inpainting time,and effectively employed a novel fashion to determine the priority levels of the blocks which was waiting for being repaired for guaranteeing the quality of the repaired images. The experimental results show that compared with the Criminisi algorithm,the proposed QSOMB algorithm is effective in both guaranteeing the quality of repaired images and saving the much more repairing time.Thus,it's an effective image inplanting algorithm that can be well applied in practice.
出处 《计算机应用研究》 CSCD 北大核心 2014年第7期2233-2237,2240,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(11062001 11165003)
关键词 图像修复 计算复杂度 优先级 粗略搜索 精细搜索 结构信息 image inpainting computation complexity priority levels rough searching precise searching structure information
  • 相关文献

参考文献14

  • 1BERTALMIO M, SAPIRO G, CASELLES V, et al. Image inpainting [ C ]//Proc of the 27th International Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 2000:417-424.
  • 2SHEN Jian-hong, cHANT F. Mathematical modets for local non-tex- ture inpainting[ J]. SIAM Journal on Applied Mathematics,2001, 62(3) :1019-1043.
  • 3CHANT F, SHEN Jian-hong, VESE L. Variational PDE models in image processing[ J]. Notices of the American Mathematical Soci- ety,2003,50( 1 ) :14-26.
  • 4CRIMINISI A, PEREZ P, TOYAMA K. Object removal by exemplar- based image inpainting [ C]//Proc of IEEE Computer Society Confer, ence on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society ,2003:721-728.
  • 5WONG A, ORCHARD J. A nonlocal-means approach to exemplar- based inpainting [ C ]//Proc of IEEE International Conference on Image Processing. San Diego: IEEE Press, 2008: 2600-2603.
  • 6屈磊,韦穗,梁栋,王年.快速自适应模板图像修复算法[J].中国图象图形学报,2008,13(1):24-28. 被引量:13
  • 7孟春芝,何凯,焦青兰.自适应样本块大小的图像修复方法[J].中国图象图形学报,2012,17(3):337-341. 被引量:32
  • 8ANAMANDRA S H, CHANDRASEKARAN V. Exemplar-based color image inpainting using a simple and effective gradient function[ C ]// Proc of International Conference on Image Processing and Computer Vision. Las Vegas : CSREA Press, 2010 : 140-145.
  • 9Zhou Yatong,Li Lin,Xia Kewen.RESEARCH ON WEIGHTED PRIORITY OF EXEMPLAR-BASED IMAGE INPAINTING[J].Journal of Electronics(China),2012,29(1):166-170. 被引量:28
  • 10XU Zong-ben, SUN Jian. Image inpainting by patch propagation using patch sparsity[ J]. IEEE Trans on Image Processing, 2010,19 (5) :1153-1165.

二级参考文献35

  • 1屈磊,韦穗,梁栋,王年.快速自适应模板图像修复算法[J].中国图象图形学报,2008,13(1):24-28. 被引量:13
  • 2Drori I, Cohen-Or D, Yeshurun H. Fragment-based image completion[ C ]//Proceedings of ACM SIGGRAPH. New York, USA: ACM, 2003 : 303-312.
  • 3Criminisi A, Perez P, Toyama K. Object removal by exemplar- based inpainting [ C ]//Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison: Wisconsin, 2003:721-728.
  • 4Andrei R, Marcel J T, Jan B. Edge-based image restoration [ J]. IEEE Transactions on Image Processing, 2005, 14 (10) : 1454-1468.
  • 5Sun J, Yuan L, Jia J Y, et al. Image completion with structure propagation [ C ]//Proceedings of ACM SIGGRAPH. New York, USA: ACM, 2035, 24 (3) : 861-868.
  • 6Shen M F, Li B. Structure and texture image iupainting based on region segmentation [ C ]// Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Hawaii, USA : Honolulu, 2007: 701 -704.
  • 7Wang M Q, Han G Q, Tu Y Q. Edge-based image completing guided by region segmentation [ C ]// Proceedings of ISECS International Colloquium Computing, Communication,Control, and Management. Guangzhou, China: IEEE, 2008 : 152-156.
  • 8Wong A, Orchard J. A nonlocal-means approach to exemplar- based inpainting [ C ]// Proceedings of 2008 the 15th IEEE International Conference on Image Processing. San Diego, CA, USA: IEEE, 2008: 2600-2603.
  • 9Xu Z B, Sun J. Image inpainting by patch propagation using patch sparisty [ J]. IEEE Transactions on Image Processing, 2010, 19(5): 1153-1165.
  • 10Komodakis N, Tziritas G. Image completion using efficient belief propagation Via priority scheduling and dynamic pruning [ J ]. IEEE Transactions on Image Processing, 2007, 16 (11 ) : 2649- 2661.

共引文献62

同被引文献55

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部