摘要
The existence of residual austenite in weld metal plays an important role in determining the properties and dimensional accuracy of welded rotors. An effective corrosive agent and the metallographic etching process were developed to clearly reveal the characteristics of residual austenite in the weld metal of a 9Cr1MoNbV welded rotor. Moreover, the details of the distribution, shape, length, length-to-width ratio, and the content of residual austenite were systematically characterized using the Image-Pro Plus image analysis software. The results revealed that the area fraction of residual austenite was approximately 6.3% in the observed weld seam; the average area, length, and length-to-width ratio of dispersed residual austenite were quantitatively evaluated to be (5.5 ± 0.1)μm2, (5.0 ± 0.1)μm, and (2.2 ± 0.1), re-spectively. The newly developed corrosive agent and etching method offer an appropriate approach to characterize residual austenite in the weld metal of welded rotors in detail.
The existence of residual austenite in weld metal plays an important role in determining the properties and dimensional accuracy of welded rotors. An effective corrosive agent and the metallographic etching process were developed to clearly reveal the characteristics of residual austenite in the weld metal of a 9Cr1MoNbV welded rotor. Moreover, the details of the distribution, shape, length, length-to-width ratio, and the content of residual austenite were systematically characterized using the Image-Pro Plus image analysis software. The results revealed that the area fraction of residual austenite was approximately 6.3% in the observed weld seam; the average area, length, and length-to-width ratio of dispersed residual austenite were quantitatively evaluated to be (5.5 ± 0.1)μm2, (5.0 ± 0.1)μm, and (2.2 ± 0.1), re-spectively. The newly developed corrosive agent and etching method offer an appropriate approach to characterize residual austenite in the weld metal of welded rotors in detail.