期刊文献+

一类非线性神经网络中噪声改善信息传输 被引量:5

Noise-enhanced information transmission of a non-linear multilevel threshold neural networks system
原文传递
导出
摘要 以互信息为测度,通过数值计算和计算机仿真比较详细地讨论了在加性和乘性噪声共同作用下的一类非线性神经网络中噪声改善信息传输的(阈上)随机共振现象.在一定的系统阈值和固定的乘性(或加性)噪声强度下,互信息随着加性(或乘性)噪声强度的增加显示出上凸变化,(阈上)随机共振出现;系统阈值单元数目的增加可增强信息传输的效果;系统阈值的增加使得信号处在阈下的成分增多,(阈上)随机共振现象更容易发生.另外,改变加性噪声强度比改变乘性强度时(阈上)随机共振更容易发生.以上结果说明(阈上)随机共振现象的存在性和噪声改善信息传输的效果与乘性或加性噪声强度、阈值单元数以及系统阈值水平密切相关. In this paper, (supra-threshold) stochastic resonance phenomenon of noise-enhanced information transmission is studied in detail through the numerical calculation and the computer simulation in a non-linear multilevel threshold neural networks system, which is affected by both additive noise and multiplicative noise, then the mutual information is used to characterize the phenomenon. The mutual information as a function of additive noise intensity or multiplicative noise intensity brings on convex changes under a suitable system threshold and a fixed multiplicative noise intensity or additive noise intensity, which shows that the (supra-threshold) stochastic resonance phenomenon occurs. The increases in the number of the system threshold units can enhance the effectiveness of information transmission; the increase of the system threshold can increase the signal components that are under the threshold, and thus the supra-threshold stochastic resonance takes place more easily. In addition, by changing the additive noise intensity the supra-threshold stochastic resonance occurs more easily than by changing the multiplicative noise intensity. The above results show that both the existence of the supra-threshold stochastic resonance and the effectiveness of noise-improved the signal transmission are closely related to multiplicative or additive noise intensity, the number of threshold units, and the system threshold level.
作者 李欢 王友国
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第12期59-65,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61179027)资助的课题~~
关键词 神经网络 噪声 (阈上)随机共振 互信息 neural networks system noises (supra-threshold) stochastic resonance mutual information
  • 相关文献

参考文献2

二级参考文献25

  • 1Hodgkin A L, Huxley A F 1952 J. Gen. Physiol 117 500.
  • 2FitzhHugh R 1960 J. Gen. Physiol 43 867.
  • 3Alarcon T, Perez-Madrod A, Rubi J M 1998 Phys. Rev. E 57 4979.
  • 4Pikovsky A S, Kurths J 1997 Phys. Rev. Lett. 78 775.
  • 5Nozaki D, Mar D J, Grigg P, Coliins J J 1999 Phys. Rev. Lett. 82 2402.
  • 6Zhang G J, Xu J X 2005 Chaos, Solitons & Fractals 23 1439.
  • 7王青云, 石霞, 陆启韶 2008 神经元耦合系统的同步动力学(北京: 科学出版社).
  • 8Wang Q Y, Lu Q S, Chen G R, Feng Z S, Duan L X 2009 Chaos, Solitons & Fractals 39 918.
  • 9Zhen B, Xu J 2010 Commun Nonlinear Sci. Numer. Simulat. 15 442.
  • 10Fan D J, Hong L 2010 Commun Nonlinear Sci. Numer. Simulat. 15 1873.

共引文献19

同被引文献99

  • 1Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance[ J]. Journal of Physics A:Mathematical and Gener- al, 1981,14( 11 ) :453-457.
  • 2Fauve S, Heslot F. Stochastic resonance in a bistable system [ J]. Phys Lett, t983,97A(1-2) :5-7.
  • 3Gammaitoni L, Hanggi P, Jung P. Stochastic resonance [ J ]. Rev Mod Phys, 1998,70( 1 ) :223-287.
  • 4Gingl Z, Kiss L B, Moss F. Non-dynamic stochastic resonance [ J ]. Eurnphysies Letters, 1995,29 : 191 - 196.
  • 5Mitaim S, Kosko B. Adaptive stochastic resonance [ J ]. Pro- ceeding of the IEEE, 1998,86 ( 11 ) :2152-2183.
  • 6Zozor S, Amblard P O. Stochastic resonance in discrete-time nonlinear AR(1 ) models[J]. IEEE Trans on Signal Process- ing, 1999,47( 1 ) : 108-122.
  • 7Collins J J, Chow C C, Imhoff T T. Aperiod stochastic reso- nance in excitable systems [ J ]. Phys Rev E, 1995,52 (4) : 3321-3324.
  • 8Collins J J,Chow C C, Imhoff T T. Stochastic resonance with- out tuning[J]. Nature,1995,376(20) :236-238.
  • 9Chapeau-Blondeau F, Godivier X. Theory of stochastic reso- nance in signal transmission by static nonlinear system [ J ]. Phys Rev E, 1997,55 ( 2 ) : 1478-1495.
  • 10Zozor S, Amblard P O. Stochastic resonance in discrete-time nonlinear SETAR( 1,2,0,0) model[ C]//Proc of IEEE signal process, workshop higher order stat. Banff Aha, Canada: IEEE, 1997 : 166-170.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部