期刊文献+

一种利用高斯函数的聚类算法 被引量:7

A Clustering Algorithm by Gause Function
下载PDF
导出
摘要 基于密度带噪音的空间数据聚类算法,提出了一种改进后的聚类算法。该算法引入了密度分布函数的概念,并采用高斯函数作为影响函数的构成因素。算法以当前具有最大密度的对象作为起点,再从该点的K最邻近结点扩展,直至密度下降到给定的密度阈值时结束。试验测试结果表明:该算法的效果和效率优于传统的基于密度的带噪音的空间数据聚类算法。 An improved clustering algorithm was put forward based on DBSCAN( Density-Based Spatial Clustering of Applications with Noise) that is an traditional and classical clustering algorithm. This algorithm introduced the concept of density distribution function and adopted Gause function as the factor of influence function. Classification was firstly performed from the point that was the maximum density point which extended by KNN( K-Nearest Neighbor algorithm) once again until the density descended to the given density threshold. Experimental results show that the clustering effect and the efficiency of this new algorithm are superior to the traditional DBSCAN.
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2014年第5期33-36,109,共4页 Journal of Henan University of Science And Technology:Natural Science
基金 贵州省自然科学基金项目(黔科合丁字[2013]2214号) 贵州省科技厅联合基金项目(黔科合J字LKS[2010]02号 黔科合J字LKS[2009]13号)
关键词 聚类 核心点 密度分布 高斯函数 clustering core density distribution gause function
  • 相关文献

参考文献13

  • 1Mac Q J. Some Methods for Classification and Analysis of Multivariate Observations [ C ] // Proc of Fifth BerkeleySymposium on Math. Stat and Prob : University of California Press, 1967:281 - 297.
  • 2Christian M, Diem H. Clustering by Kernel Density[ J ]. Computational Economics ,2007,29 (2) : 199 - 212.
  • 3Nasibov E N, Ulutagay G. Robustness of Density-based Clustering Methods with Various Neighborhood Relations [ J]. Fuzzy Sets and Systems,2009,160(24) :3601 -3615.
  • 4于永玲,李向,宗思生,施进发.考虑空间格局的谱聚类算法及其应用[J].河南科技大学学报(自然科学版),2013,34(5):101-104. 被引量:1
  • 5TAN P N,STEINBACH M,KUMAR V.数据挖掘导论[M].范明,范宏建,等译.北京:人民邮电出版社,2006.
  • 6Bicici E, Yuret D. Locally Scaled Density Based Clustering[ C ]//The 8th International Conference on Adaptive and Natural Computing Algorithms. Berlin : Springer-Verlag ,2007:739 - 748.
  • 7Parsons L, Haque E, Liu H. Subspace Clustering for High Dimensional Data : A Review [ J ]. Sigkdd Explorations, 2004,6 (1) :90 - 105.
  • 8赵杰,杨柳.聚类分析算法dBscan的改进与实现[J].微电子学与计算机,2009,26(11):189-192. 被引量:14
  • 9许虎寅,王治和.一种改进的基于密度的聚类算法[J].微电子学与计算机,2012,29(2):44-47. 被引量:20
  • 10周水庚,周傲英,金文,范晔,钱卫宁.FDBSCAN:一种快速 DBSCAN算法(英文)[J].软件学报,2000,11(6):735-744. 被引量:42

二级参考文献52

共引文献166

同被引文献55

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部