期刊文献+

基于KPC-kNN方法的批次过程故障诊断 被引量:1

Batch Process Fault Detection Based on KPC-kNN Method
下载PDF
导出
摘要 为克服FD-kNN算法的计算量和存储量特别大,PC-kNN主元仅仅能体现过程中线性信息的不足,提出一种基于KPC-kNN的故障诊断方法.在KPCA提取非线性信息后,在核主元空间里应用kNN算法,计算k个最近样本的距离平方和作为统计指标,使用核密度估计方法计算训练空间的控制限.半导体工业实例的实验结果验证了所提方法的有效性. Aiming at the problem that large computational and storage capacity of FD-kNN and inefficient in reflection nonlinear information of PC-kNN,a fault detection method based on KPC-kNN(Kernel Principal Component-k Nearest Neighbor) is proposed.kNN algorithm is applied in KPCA feature space after the nonlinear information has been extracted by KPCA.Then the sum of k nearest neighbor squared distances of KPC is computed as stastical indicators and kernel density estimation is used to set the statistical threshold of normal mode.The experiment results of semiconductor industry show the good performance of the proposed KPC-kNN method in fault detection.
出处 《沈阳化工大学学报》 CAS 2014年第2期170-174,共5页 Journal of Shenyang University of Chemical Technology
基金 国家自然科学基金资助项目(60774070 61034006 61174119) 辽宁省教育厅科学研究项目(L2013155)
关键词 故障检测 核主元分析(KPCA) k最近邻(kNN) 批次过程 KPC-kNN fault detection kernel principal component analysis(KPCA) k nearest neighbor(kNN) batch process KPC-kNN
  • 相关文献

参考文献7

  • 1李元,谢植,周东华,王纲.MPCA在间歇反应过程故障诊断中的应用[J].化工自动化及仪表,2003,30(4):10-12. 被引量:6
  • 2Nomikos P, MacGregor J F. Multivariate SPC Charts for Monitoring Batch Processes [ J ]. Technometrics, 1995,7 ( 1 ) :41 - 57.
  • 3Nomikos P, MacGregor J F. Monitoring and Batch Processes Using Multi-way Principal Component A-nalysis [ J ]. AIChE Journal, 1994,40 ( 8 ) : 1361 - 1375.
  • 4He Q P,Wang J. Principal Component Based k-Nea- rest-Neighbor Rule for Semiconductor Process Fault Detection [ C ]// 2008 American Control Confer- ence. Seattle, WA: IEEE,2008 : 1606 - 1611.
  • 5Lee J M, Yoo C K, Choi S W, et al. Nonlinear Process Monitoring Using Kernel Principal Compo- nent Analysis [ J]. Chemical Engineering Science, 2004,59( 1 ) :223 - 234.
  • 6He Q P, Wang J. Fault Detection Using the k-Nea- rest Neighbor Rule for Semiconductor Manufactur- ing processes [ J ]. IEEE Transactions on Semicon- ductor Manufacturing,2007,20 (4) : 345 - 354.
  • 7郭小萍,袁杰,李元.基于特征空间k最近邻的批次过程监视[J].自动化学报,2014,40(1):135-142. 被引量:17

二级参考文献12

  • 1陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:61
  • 2Nomikos P, MacGregor J F. Monitoring Batch Process Using Multi-way Principle Component Analysis[ J ]. AICHE J, 1994,40(8) :1361-1375.
  • 3Nomikos P, MacGregor J F. Multi-way Partial Least Squares in Monitoring Batch Processes [ J ]. Chemom Intell Lab Syst, 1995,30:97-108.
  • 4Nomikos P, MacGregor J F. Multivariable SPC Charts for Monitoring Batch Process[J]. Technometrics, 1995,37(1) :41-59.
  • 5Qin S J, Duina R. Determining the Number of Principal Components for Best Reconstruction [ J ]. J of Process Control,2000,10(2 -3) :245-250.
  • 6GAO Xiang, WANG Gang, LI Yuan, MA Ji-hu. Multivariate Statistical Process Monitoring Based on Synchronization of Trajectories Using DTW[ A ]. 4th IFAC Workshop on On-line Fault Detection and Supervision in the Chemical Process Industries (Chemas-4 ) [ C ]. 2001,383-387.
  • 7Dahl K S, Piovoso M J, Kosanovich K A. Translating Third-order Data Analysis Methods to Chemical Batch Processes[J]. Chemom Intell Lab Syst, 1999,46 : 161-180.
  • 8Kosanovich K A, Dahl K S, Piovoso M J. Improved Process Understanding Using Multiway Principal Component Analysis[J]. Ind Eng Chem Res, 1996,35 : 138-146.
  • 9赵春晖,王福利,姚远,高福荣.基于时段的间歇过程统计建模、在线监测及质量预报[J].自动化学报,2010,36(3):366-374. 被引量:59
  • 10ZHANG Ying-Wei,ZHOU Hong,QIN S. Joe.Decentralized Fault Diagnosis of Large-scale Processes Using Multiblock Kernel Principal Component Analysis[J].自动化学报,2010,36(4):593-597. 被引量:23

共引文献21

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部