期刊文献+

基于Bayesian多分支岩石可钻性值估计 被引量:2

Estimation of rock drillability based on a Bayesian multi-branch model
下载PDF
导出
摘要 针对智能优化控制过程中岩石可钻性参数估计存在非实时性和模型泛化能力差的问题,采用两层结构建立基于Bayesian多分支岩石可钻性估计模型。通过Bayesian分类器实现岩性分类以提高可钻性模型样本数据的相关性,细化可钻性估计模型;采用改进双链量子遗传算法优化的BPNN结构,根据不同的岩石类型建立相应的岩石可钻性IDCQGA_BPNN估计模型。结果表明,该方法通过算法优化网络模型增强了模型的泛化能力,加快了参数的估计速度和估计精度,能够满足智能优化控制过程中岩石可钻性参数估计的实时性需求。 A two-level model was established for predicting rock's drillability based on a Bayesian multi-branch model in order to improve the real-time calculating capability of the model and increase its generalization ability for intelligent optimization control.By using the Bayesian method for lithology classification,the correlations of different rock samples and their drillability can be refined,and consequently the rock drillability model can be improved.Using an optimized back-propagation neural network(BPNN) with an improved double-chain quantum genetic algorithm(IDCQGA),the new model of IDCQGA_BPNN can be modified according to the lithology type of rocks.The results show that this method can not only enhance the generalization ability of the model,which is optimized by an intelligent algorithm,but also can accelerate its calculation speed and improve its accuracy.The simulation results indicate that the model is satisfied for the use in real-time intelligent optimization control process for predicting the rock drillability while drilling.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第3期73-79,共7页 Journal of China University of Petroleum(Edition of Natural Science)
基金 陕西省自然科学基金项目(2012JQ8046) 陕西省教育厅专项科研计划(11JK0933)
关键词 岩石可钻性 Bayesian分类器 L-M算法 改进的双链量子遗传算法 rock drillability Bayesian classifier Levenberg-Marquardt algorithm improved double-chain quantum genetic algorithm
  • 相关文献

参考文献23

  • 1HOSEINIE S H, AGHABABAEI H, POURRAHIMIAN Y. Development of a new classification system for assessing of rock mass drillability index ( RDi ) [ J ]. International Journal of Rock Mechanics and Mining Sciences, 2008 (4) :1-10.
  • 2HOSEINIE S H, ATAEI M, OSANLOO M. A new classi- fication system for evaluating rock penetrability[ J]. Inter- national Journal of Rock Mechanics and Mining Sciences, 2009, IE :329-1340.
  • 3李士斌,李玮,由洪利,王习武.基于分形理论的岩石可钻性分级方法[J].天然气工业,2007,27(10):63-66. 被引量:12
  • 4王培义,翟应虎,王克雄,王长东.分形理论及其在地层可钻性预测中的应用[J].石油钻采工艺,2005,27(6):21-23. 被引量:7
  • 5FUNAHSHI K I. On the approximation realization of con- tinuous mappings by neutral networks [ J ]. Neural Net- works, 1989 (2) : 183-192.
  • 6HORNI K, STRINCHCOMBER M, WHITER H. Multi- layer feedforward networks are universal approximators [J]. Neural Networks, 1989(2):359-366.
  • 7HORNI K. Approximation capabilities of muhilayer feed- forward neural networks [ J ]. Neural Networks, 1991 (4) :551-557.
  • 8FRIEDMAN N, GEIGER D. Bayesian network classifi- ers [ J ]. Machine Learning, 1997,29 (2/3) : 131-163.
  • 9MITCHELL T. Machine learning[ M ]. New York: McGraw Hill, 1997.
  • 10GROSSMAN D, DOMINGOS P. Learning Bayesian net- work classifiers by maximizing conditional likelihood: proceedings of the 21st International Conference on Ma- chine Learning, Banff, Canada, 2004 [ R ]. Canada: ACM ,2004 :361-368.

二级参考文献69

共引文献186

同被引文献21

  • 1刘之的,夏宏泉,陈平,汤小燕,洪余刚.基于灰色GM(0,N)法的测井预测岩石可钻性研究[J].天然气工业,2004,24(11):76-78. 被引量:6
  • 2Samui J, Lansivaara T, Kim D. Utilization relevance vector machine for slope reliability analysis [ J ]. Applied Soft Computing, 2011,11 (5) :4036 -4040.
  • 3Samui P. Slope stability analysis: a support vector machine approach [ J ]. Environmental Geology,2008,56 : 255 - 267.
  • 4Tipping M E. Sparse Bayesian leaning and relevance vector machine[ J]. Journal of Machine Learning Research,2001 , ( 1 ) : 211 - 244.
  • 5Wang X D, Ye M Y, Duanmu C J. Classification of data from electronic nose using relevance vector machines [ J ]. Sensors and Actuators B : Chemical,2009,140( 1 ) : 143 - 148.
  • 6Xu C, Dai F C, Xu X W, Lee Y H. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China [ J ]. Geomorphology, 2012,145 - 146:70 - 80.
  • 7Kennedy J, Eberthart RC. Particle swarm optimization [ C ]. In: Proceedings of the IEEE international conference on neural networks, Perth, Australia, 1995, pp 1942- 1948.
  • 8马海,王延江,魏茂安,胡睿.地层可钻性级值预测新方法[J].石油学报,2008,29(5):761-765. 被引量:12
  • 9马海,王延江,胡睿,魏茂安.基于相关向量机的地层可钻性级值预测[J].中国石油大学学报(自然科学版),2010,34(2):67-70. 被引量:2
  • 10邢军,姜谙男,邱景平,孙晓刚.基于DE-SVM的岩层可钻性预测研究[J].东北大学学报(自然科学版),2010,31(9):1345-1348. 被引量:4

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部