摘要
In polymer modified cementitious materials, it is hard to set up a chemical connection between the added polymer and the cement moiety. In this study FS (functional silane) was adopted to form this connection as a bridge component which has the functional group forming bonds with polymer. To testify the connection between FS and cement moiety, Q2/Q1 ratio (Qx: intensity ratio) investigation was carried out by the means of quantitative solid state 29Si MAS NMR. The results show that the Q2/Q1 ratio has increased with the addition of FS which indicates that the silicon chain length has increased, and the quantity of silicon atoms at site of Q2, chain site, has enhanced, showing that the silicon atom of FS has connected to the silicon chain of cement moiety by the bond "-Si-O-Si-" formation.
In polymer modified cementitious materials, it is hard to set up a chemical connection between the added polymer and the cement moiety. In this study FS (functional silane) was adopted to form this connection as a bridge component which has the functional group forming bonds with polymer. To testify the connection between FS and cement moiety, Q2/Q1 ratio (Qx: intensity ratio) investigation was carried out by the means of quantitative solid state 29Si MAS NMR. The results show that the Q2/Q1 ratio has increased with the addition of FS which indicates that the silicon chain length has increased, and the quantity of silicon atoms at site of Q2, chain site, has enhanced, showing that the silicon atom of FS has connected to the silicon chain of cement moiety by the bond "-Si-O-Si-" formation.
基金
Funded by the National Basic Research Program of China(973 Program(No.2009CB6232007)