期刊文献+

色散项系数为负的MKdV-Burgers方程的有界行波解 被引量:3

Bounded Traveling Wave Solutions for MKdV-Burgers Equation with Negative Dispersion Coefficient
下载PDF
导出
摘要 利用平面动力系统理论、假设待定法和齐次化原理研究了色散项系数为负的MKdV-Burgers方程的有界行波解,得到了方程行波解所对应的平面动力系统在不同参数条件下的全局相图以及有界行波解存在的条件和个数.讨论了该方程有界行波解的波形与耗散系数之间的关系,给出了表征耗散作用大小的临界值,该临界值与Bikbaev在文献中提出的临界值是不相同的.求出了该方程的钟状和扭状孤波解,进一步根据衰减振荡解对应的解轨线在相图中的演化关系,求得了该方程的衰减振荡解的近似解.给出了所求衰减振荡近似解与精确解的误差估计,其误差是以指数形式速降的无穷小量.最后,证明了所求衰减振荡解的近似解关于对接点的稳定性. The bounded traveling wave solutions of MKdV-Burgers equation with negative dispersion coefficient were studied with resorting to the theory of planar dynamical systems, undetermined coefficients method and homogenization principle.The global phase portraits under different parameter conditions as well as the existent number and existense conditions were obtained for the dynamical system corresponding to the traveling wave solutions of the MKdV-Burgers equation.The relation between the profiles of bounded traveling wave solutions and dissipation coefficient was investigated,and a critical value,different from the one proposed by Bikbaev in his article was provided,which characterizes the scale of dissipation effect is presented. The bell and kink profile solitary wave solutions are presented for the MKdV-Burgers equation. Moreover,approximate damped oscillatory solutions of the MKdV-Burgers equation are obtained according to the evolution relation of orbits corresponding to the approximate damped oscillatory solutions in the global phase portraits.This paper also presents the error estimates between exact and approximate solutions for the approximate damped oscillatory solutions.The error is infinitesimal decreasing in exponential form.Finally,the stability at connective points was proved for the approximate damped oscillatory solutions.
出处 《上海理工大学学报》 CAS 北大核心 2014年第3期205-216,222,共13页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(11071164) 上海市教委重点科研创新资助项目(13ZZ118) 上海市一流学科(系统科学)建设资助项目(XTKX2012)
关键词 MKdV-Burgers 方程 定性分析 衰减振荡解 误差估计 稳定性 MKdV-Burgers equation qualitative analysis damped oscillatory solution error estimate stability
  • 相关文献

参考文献28

  • 1Wadati M. The modified Korteweg-de Vries equation [J]. J Phys Soc Japan, 1973,34(5): 1289 - 1296.
  • 2Miura R M. Korteweg-de Vries equation and genera- lizations. I. A remarkable explicit nonlinear transfor- mation[J]. J Math Phys, 1968,9 (8) : 1202 - 1204.
  • 3El-shamy E F. Dust-ion-acoustic solitary waves in a hot magnetized dusty plasma with charge fluctuations [J]. Chaos Solitons & Fractals, 2005, 25 (3): 665 - 674.
  • 4Agrawal G P. Nonlinear fiber optics [M]. Boston; Academic Press, 1989.
  • 5Beals R, Deift P, Tomei C. Direct and inverse scattering on the line, mathematical surveys and monographs 28 [ M ]. Providence R I: Amer Math Soc, 1988.
  • 6Ginibre J, Tsutsumi Y. Existence and uniqueness of solutions for the generalized Korteweg-de Vries equation[J]. SIAM J Math Anal, 1989, 20 (6): 1388 - 1425.
  • 7Kametaka Y. Korteweg-de Vries equation IV. Simplest generalization[J]. Proc Japan Acad, 1969,45 (8) : 661 - 665.
  • 8Kato T. On the Korteweg-de Vries equation [J]. Manuscripta Math, 1979,28 (1/2/3) ; 89 - 99.
  • 9Kato T. On the Cauchy problem for the (generalized) Korteweg-de Vries equation [J]. Adv Math Supph 1983,8: 93 - 128.
  • 10Kruzhkov S N, Faminskii A V. Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation[J]. Math USSR Sb, 1984,48(2) :391 - 421.

二级参考文献19

共引文献60

同被引文献24

  • 1陈金兵,耿献国.On the linearization of the coupled Harry-Dym soliton hierarchy[J].Chinese Physics B,2006,15(7):1407-1413. 被引量:1
  • 2Ma S W, Zou X F. Existence, uniqueness and stability of traveling waves in a discrete reaction diffusion monostable equations with delay [J]. Journal of Differential Equations, 2005,217 (1) : 54 - 87.
  • 3Chow S N. Lattice dynamical systems, dynamical systemsFM]//Macki J W, Zecca P eds. Dynamical Systerns, Lecture Notes in Mathematics. Berlin.. Sprin~er, 2003,1822 ~ I - 102.
  • 4Chow S N,Mallet-Paret J,Shen W X. Traveling waves in lattice dynamical systems[J]. Journal of Differential Equations, 1998,149 (2) .. 248 - 291.
  • 5Keener J P. Propagation and its failure in coupled systems of discrete excitable cells[J]. SIAM Journal on Applied Mathematics, 1987,47 (3) : 556 - 572.
  • 6Cart ], Chmaj A. Uniqueness of traveling waves for nonlocal monostable equations[J]. Proceedings of the American Mathematical Society, 2004, 132 (8): 2433 - 2439.
  • 7Guo J S, Wu C H. Existence and uniqueness of traveling waves for a rnon~table 2- D lattice dynamical system[J]. Osaka Journal of Mathematics,2008,45(2) :327 - 346.
  • 8Pan S X. Asymptotic behavior of traveling fronts of.the delayed Fisher equation [J]. Nonlinear Analysis Real World Applications, 2009,10(2) `. 1173 - 1182.
  • 9Wang Z C, Li W T, Ruan S G. Traveling fronts in monostable equations with nonlocal delayed effects [J]. Journal of Dynamics and Differential Equations, 2008,20(3) ~ 563 - 607.
  • 10Yu Z X. Uniqueness of critical traveling waves for nonlocal lattice equations with delays[J]. Proceedings of the American Mathematical Society, 2012,140 (11) .. 3853 - 3859.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部