期刊文献+

基于时序特征的城市轨道交通客流预测 被引量:15

Urban railway traffic passenger flow forecast based on the timing characteristics
下载PDF
导出
摘要 通过分析城市轨道交通客流量的时序特征和RBF神经网络的作用机理,将具有不同时序特征的数据分别用不同的神经网络进行处理,建立了基于客流时序特征的并行加权神经网络模型,并用该模型对北京市城市轨道交通各条线路的客流进行预测.结果表明,各线路客流量预测结果的平均绝对百分误差均在10%以下,小于单个神经网络的预测误差,提高了预测精度. We propose to use the neural network to process the data with timing characteristics by analyzing urban rail transit passenger flow timing characteristics and the mechanism of RBF neural network.A parallel weighted neural network model based on passenger flow sequence characteristics is developed.We use this model to forecast the Beijing urban rail transit passenger flow and get a better forecast result.Each line's traffic prediction error is below 10 %,which is less than the prediction error of a single neural network so as to improve the prediction accuracy.
出处 《北京交通大学学报》 CAS CSCD 北大核心 2014年第3期1-6,共6页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 科技部"科技支撑"计划项目资助(2011BAG01B01-1)
关键词 轨道交通 客流预测 组合预测 神经网络 时序特征 railway traffic passenger flow forecast combination forecasting neural network timing characteristics
  • 相关文献

参考文献5

二级参考文献21

  • 1杨慧中,陶振麟,张素贞.带一类自适应非线性特性的变步长BP学习算法[J].系统仿真学报,2001,13(z1):108-110. 被引量:2
  • 2王振滨,陈孝祺,李劲.自动扶梯节能评估系统[J].上海电气技术,2008,1(1):12-14. 被引量:3
  • 3刘荻,周振民.RBF神经网络在径流预报中的应用[J].华北水利水电学院学报,2007,28(2):12-14. 被引量:14
  • 4梁广深.城市轨道交通客流预测的不确定性分析[J].城市轨道交通研究,2007,10(5):1-3. 被引量:12
  • 5JENSEN H. Using neural networks for credit scoring[ J ].Managerial Finance, 1992,18(6) : 15 - 26.
  • 6COATS P, PANT L. Recnganizing finasmial distress patterns using a neural network tool[ J ]. Financial Management,1993:142 - 155.
  • 7ALTMAN E, MARCO G, etal. Corporate distress diagnosis:comparisom using linear discriminant analysis and neural netwoeks ( the Italian experience ) [ J ]. J Banking and Finance, 1994, 18:505-529.
  • 8HASHEMI R R,Le BLANC L A, RUCKS C T, et al. A hybrid intelligent system for predicting bank holding structrure[ J ]. European Journal of Operational Research,1998, 109: 390-402.
  • 9WEST D. Neural network credit scoring models [ J ].Computers & Operations Research, 2000, 27:1131 - 1152.
  • 10MALHOTRA R, MALHOTRA D K. Differentiating between good credits and bad credits using neuro-fuzzy systems[J].Computing,Artificial Intelligence and Information Technology, 2002, 136:190-211.

共引文献75

同被引文献167

引证文献15

二级引证文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部