期刊文献+

熔盐冷却球床堆热通道热工水力特性数值分析 被引量:6

Thermal-hydraulics numerical analyses of Pebble Bed Advanced High Temperature Reactor hot channel
原文传递
导出
摘要 基于计算流体力学(Computational Fluid Dynamics,CFD)通用计算程序Fluent,研究了模块化熔盐冷却球床堆(Pebble Bed Advanced High Temperature Reactor,PB-AHTR)中心热通道稳态热工水力行为。利用已开发的多孔介质流固两相局域非热平衡模型计算了球床堆中的压降、冷却剂的温场分布以及固相球床的温场分布,计算并比较了不同的多孔介质阻力因子(Ergun与KTA)对通道内的冷却剂流动以及温场分布的影响,并对丧失部分冷却剂情况下通道内的冷却剂及燃料温度进行了计算分析。结果表明使用不同的阻力因子对堆芯压降计算结果和流场的分布影响较大;而冷却剂温场及固相球床温场和球心的温度分布在不同的阻力因子下的差别较小,在PB-AHTR的设计参数下堆芯产生的热量能够被有效的输出,设计具有较大的安全裕度。计算结果对于球床堆的优化设计提供了一定的参考价值。 Background: The thermal hydraulics behavior of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) hot channel was studied. Purpose: We aim to analyze the thermal-hydraulics behavior of the PB-AHTR, such as pressure drop, temperature distribution of coolant and pebble bed as well as thermal removal capacity in the condition of loss of partial coolant. Methods: We used a modified FLUENT code which was coupled with a local non-equilibrium porous media model by introducing a User Defined Scalar (UDS) in the calculation domain of the reactor core and subjoining different resistance terms (Ergnn and KTA) to calculate the temperature of coolant, solid phase of pebble bed and pebble center in the core. Results: Computational results showed that the resistance factor has great influence on pressure drop and velocity distribution, but less impact on the temperature of coolant, solid phase of pebble bed and pebble center. We also confirmed the heat removal capacity of the PB-AHTR in the condition of nominal and loss of partial coolant conditions. Conclusion: The numerical analyses results can provide a useful proposal to optimize the design of PB-AHTR.
出处 《核技术》 CAS CSCD 北大核心 2014年第7期79-86,共8页 Nuclear Techniques
基金 中国科学院战略性先导科技专项资助项目(No.XDA02010200)资助
关键词 熔盐冷却球床堆(Pebble Bed Advanced High Temperature Reactor PB-AHTR) 热工水力 多孔介质 Pebble Bed Advanced High Temperature Reactor (PB-AHTR), Thermal-hydraulics, Porous media
  • 相关文献

参考文献17

  • 1Ball S J, Forsberg C W. Advanced High-Temperature Reactor (AHTR) loss of forced circulation accidents[R]. USA: Oak Ridge National Laboratory, 2004.
  • 2Bardet P, Blandford E, Fratoni M, et al. Design, analysis and development of the modular PB-AHTR[R]. USA: University of California, Berkeley, 2008.
  • 3Fratoni M. Development and applications of methodologies for the neutronic design of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR)[R]. USA: University of California, Berkeley, 2008.
  • 4Orztez J A. Neutronics analysis of a modified pebble bed advanced high temperature reactor[D]. USA: Ohio State University, 2009.
  • 5Fluent 6.3 User's Guide[OL]. Fluent Inc. http://aerojet. engr.ucdavis.edu/fluenthelp/html/ug/main_pre.htm, 2006.
  • 6Fluent 6.3 UDF Manual[OL]. Fluent Inc. http://aerojet.engr.ucdavis.edu/fluenthelp/html/udf/node2. htm, 2006.
  • 7闫晓,肖泽军,黄彦平,王飞.多孔介质中流动换热特性的研究进展[J].核动力工程,2006,27(z1):77-82. 被引量:15
  • 8杜建华,王补宣.带内热源多孔介质中的受迫对流换热[J].工程热物理学报,1999,20(1):69-73. 被引量:22
  • 9Roy C T, Simon T, David G et al. An initial non-equilibrium porous-media model for CFD simulation of stirling regenerators[R]. USA: National Aeronautics and Space Administration, 2006.
  • 10宋士雄,魏泉,蔡翔舟,郭威.基于CFD方法的球床式高温气冷堆稳态热工水力分析[J].核技术,2013,36(12):39-45. 被引量:6

二级参考文献52

  • 1李林森,王侃,宋小明.CFD在核能系统分析中应用的最新进展[J].核动力工程,2009,30(S1):28-33. 被引量:9
  • 2方晨,彭晓峰,杨震.多孔介质内两相流汽相输运分析[J].工程热物理学报,2004,25(6):1007-1009. 被引量:1
  • 3[1]Williams R R,Harris D K.Cross-plane and In-Plane Porous Properties Measurements of Thin Metal Felts:applications in Heat Pipes[J].Experimental Thermal and Fluid Science,2003,27:227 ~ 235.
  • 4[2]Singh M,Mohanty K K.Dynamic Modeling of Drainage through Three-Dimensional Porous Materials[J].Chemical Engineering Science,2003,58:1 ~ 18.
  • 5[3]Kuzhir P,Bossis G,Bashtovoi V et al.Flow of Magnetorheological Fluid through Porous Media[J].European Journal of Mechanics B/Fluids,2003,22:331 ~ 343.
  • 6[4]Benkrid K,Rode S,Midoux N.Prediction of Pressure Drop and Liquid Saturation in Trickle -Bed Reactors Operated in High Interaction Regimes[J].Chemical Engineering Science,1997,52:4021 ~ 4032.
  • 7[5]Choi E,Chakma A,Nandakumar K.A Bifurcation Study of Natural Convection in Porous Media with Internal Heat Sources:the Non-Darcy Effects[J].International Journal of Heat and Mass Transfer,1998,41(2):373 ~392.
  • 8[6]Rabadi N J,Mismar S A.Enhancing Solar Energy Collection by Using Curved Flow Technology Coupled with Flow in Porous Media:An Experimental Study[J].Solar Energy,2003,75:261 ~ 268.
  • 9[7]Izadpanah M R,Müller-Steinhagen H,Jamialahmadi M.Experimental and Theoretical Studies of Convective Heat Transfer in a Cylindrical Porous Medium[J].International Journal of Heat and Fluid Flow,1998,19:629 ~635.
  • 10[9]Seguin D,Montillet A,Comiti J.Experimental Characterization of Flow Regimes in Various Porous Media-Ⅰ:Limit of Laminar Flow Regime[J].Chemical Engineering Science,1998,53(21):3751 ~ 3761.

共引文献38

同被引文献13

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部