摘要
目的为提高大黄酚(Chr)的水溶性和生物利用度,通过星点设计-效应面法优化大黄酚-β-葡聚糖包合物(Chr-β-glu)制备工艺。方法采用电磁搅拌-喷雾干燥法(ES)制备Chr-β-glu,采用星点设计优化制备工艺,以Chr与β-glu的投料比例、反应温度和搅拌速度为自变量,复合率为因变量,分别进行多元线性回归和二项式方程拟合,并根据最佳数学模型描绘效应面,选择最佳制备工艺进行验证试验。结果二项式方程拟合度较高,预测性好,R2=0.967 2;效应面法优选出的最佳工艺条件为投料比例1∶2.8、反应温度52.0℃、搅拌速度570.9 r/min,最佳理论复合率为40.6%,实际复合率为(41.4±0.81)%。结论应用星点设计-效应面优化法能够精确有效地优化Chr-β-glu制备工艺,优选出的最佳工艺稳定可行,可用于工业生产。
Objective To improve the solubility and bioavailability of chrysophanol(Chr),the preparation of inclusion complex of Chr and β-glucan(Chr-β-glu) was optimized by central composite design and response surface methodology.Methods The inclusion complex of Chr-β-glu,prepared by electromagnetic stirring and spray drying methods(ES),was optimized by central composite design.Using the mass ratio of β-glu and Chr,temperature,and stirring rate as independent variables and using the inclusion rate as dependent variable,the multiple linear regression and binomial equations were fitted to the data of overall variables,and the resulting equation was used to produce 3-D response surface graphs.The optimal formulation was predicted and the best prescription process was chosen to verification test.Results The correlation coefficient of second-order quadratic model was high and the prediction was good(R^2 = 0.967 2).The optimal conditions for the preparation of Chr-β-glu were as follows:material proportion was 1∶2.8,temperature was 52.0 ℃,and stirring rate was 570.9 r/min.The maximum inclusion rate predicted by the model was 40.6% and the actual inclusion rate was(41.4 ± 0.81)%.Conclusion Central composite design and response surface methodology are successfully used to optimize the preparation of Chr-β-glu.The optimized process is reliable,stable,and available for the industrial production.
出处
《中草药》
CAS
CSCD
北大核心
2014年第11期1540-1544,共5页
Chinese Traditional and Herbal Drugs
基金
重庆市卫生局中医药科研课题(ZY20132075)
重庆市科研院所创新能力建设计划项目资助(cstc2012pt-kyys10001
cstc2012pt-kyys10004)
关键词
大黄酚
葡聚糖复合物
增溶
星点设计
响应面优化
chrysophanol
glucan complex
solubilization
central composite design
response surface methodology