期刊文献+

多级逆流微萃取系统开发与传质性能研究 被引量:2

Development and Mass Transfer Performance of a Multi-stage Countercurrent Micro-extraction System
下载PDF
导出
摘要 为开发多级逆流微萃取系统,实现稳定逆流操作,研究液-液两相在此系统中的传质规律,以及探索传质性能的最优化操作条件。以双向四缸往复泵和四个缓冲室通过单向阀与料液罐相连,构成脉冲进料出料系统,以单向阀控制两相单向流动,实现微萃取系统的逆流操作;以30%(v/v)TBP-煤油/水体系为研究对象,选择硝酸为待萃取物,以平行并列微通道为微萃取设备,进行单级微萃取实验,研究脉冲频率、脉冲体积、浓度等操作条件对传质性能的影响;在此基础上,进行四级逆流微萃取的研究,总结出最优化操作条件。结果表明,在两相脉冲冲程均为80μL,脉冲频率为0.13 Hz时,单级微萃取的萃取级效率达到最大;在四级逆流微萃取系统中,总萃取效率超过90%。 The purpose of this work is to develop a multi-stage countercurrent micro-extraction system to achieve stable operation of countercurrent flow, and investigate liquid-liquid mass transfer performance. The countercurrent flow was achieved by using a pulse feeding discharging system and a one-way control system. The pulse feeding discharging system was composed of a reciprocating pump with four pistons moving at opposite directions, and four chambers connected with the material vessels by check valves. The single-stage extraction performance was first investigated in a multi-channel micro-extraction device with 30%TBP-kerosene / water- nitric acid as the liquid-liquid extraction system. The effect of operation conditions including pulse frequency, pulse volume and concentration on the mass transfer performance was investigated, and then the extraction performance of the four-stage micro-extraction system was tested. Optimal operation conditions were finally obtained. The highest extraction efficiency of the single-stage extraction is achieved when the pulse frequency is at 0.13Hz, with the pulse stroke of both phases at 80μL. The total extraction efficiency of the four-stage micro-extraction system is higher than 90%in all experiments.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2014年第3期524-529,共6页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金(21106077) 北京市自然科学基金(2113047)
关键词 多级逆流 微萃取 萃取效率 单向流控制 脉冲进出料 multi-stage countercurrent micro-extraction extraction efficiency one-way flow control pulse feeding and discharging
  • 相关文献

参考文献12

  • 1韩非,余武斌,李郁锦,高建荣,贾建洪,陈光文.微通道反应器中催化裂解合成N,N-二甲基丙烯酰胺新工艺研究[J].高校化学工程学报,2009,23(1):166-170. 被引量:13
  • 2TeGrotenhuis W E, Cameron R J, Butcher M G, et al. Microchannel devices for efficient contacting of liquids in solvent extraction [J]. Sep Sci Technol, 1999,34(6&7): 951-974.
  • 3Helton K L, Yager P. Interfacial instabilities affect microfluidic extraction of small molecules from non-Newtonian fluids [J]. Lab Chip, 2007, 7(11): 1581-1588.
  • 4Tokeshi M, Minagawa T, Kitamori T. Integration of a microextraction system on a glass chip: Ion-pair solvent extraction of Fe(Ⅱ) with 4,7-diphenyl-1,10-phenanthrolinedisulfonic acid and tri-n-octylmethylammonium chloride [J]. Anal Chem, 2000, 72(7): 1711-1714.
  • 5Smirnova A, Mawatari K, Hibara A, et al. Micro-multiphase laminar flows for the extraction and detection of carbaryl derivative [J]. Anal Chim Acta, 2006,558(1&2): 69-74.
  • 6Honda T, Miyazaki M, Yamaguchi Y, et al. Integrated microreaction system for optical resolution of racemic amino acids [J]. Lab Chip, 2007, 7(3): 366-372.
  • 7Huh Y S, Jeong C M, Chang H N, et al. Rapid separation of bacteriorhodopsin using a laminar-flow extraction system in a microfluidic device [J]. Biornicrofluidics, 2010, 4(1): 014103.
  • 8Hibara A, Nonaka M, Hisamoto H, et al. Stabilization of .Iiquid interface and control of two-phase confluence and separation in glass microchips by utilizing octadecylsilane modification of micro channels [J]. Anal Chem, 2002,74(7): 1724-1728.
  • 9Aota A, Nonaka M, Hibara A, et al. Countercurrent laminar microflow for highly efficient solvent extraction [J]. Angew Chem-Int Edit, 2007, 46(6): 878-880.
  • 10Gunther A, Jensen K F. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis [J]. Lab Chip, 2006, 6(12): 1487-1503.

二级参考文献12

  • 1Santos W L F, Porto M F, Muniz E C et al. Incorporation of disperse dye in N, N-dimethylacrylamide modified poly (ethlene terephthalate) fibers with supercritical CO2 [J]. J Supererit Fluids, 2001, 19(2): 177-185.
  • 2Bromoberg L, Grosberg A Y, Matsuo E S et al. Dependency of swelling on the length of subchain in poly (N, N-dimethylacrylamide)-based gels [J]. J Chem Phys, 1997, 106(7): 2906-2909.
  • 3Tomczak S, Hogen T E. Poly(N, N-dimethylacrylamide) containing pendent perfluorooctyl groups [J]. Polym Prepr, 2001, 42(1): 562-563.
  • 4Paul P N. Amidation of vinyl chloride with dimethylamine using a supported palladium catalyst [P]. USP: 5,312,984, 1994-05-17.
  • 5Takao H, Nagamoto A. Preparation of N,N-dimethylacrylamide [P].JP: 10, 279,545, 1998-10-20.
  • 6Itoh H, Nakagawa T, Nitta A. Production process of N-substituted amide compounds [P]. USP: 4, 835, 312, 1989-05-30.
  • 7Klaus J, Volker H, Holger L et al. Chemistry in microstructured reactors [J]. Angew Chem Int Ed. 2004, 43(18), 406-446.
  • 8Brian P M, Kristin E P, Jeremy L S et al. Greener approaches to organic synthesis using microreactor technology [J]. Chemical Reviews, 2007, 107(6): 2300-2318.
  • 9CHEN G W, YUAN Q, LI H Q et al. CO selective oxidation in a microchannel reactor for PEM fuel cell [J]. Chem Eng J, 2004, 101(1-3): 101-106.
  • 10CHEN G W, LI S L, YUAN Q. Pd-Zn/Cu-Zn-AI catalysts prepared for methanol oxidation reforming in microchannel reactors [J] Catal Today, 2007, 120(1): 63-70.

共引文献12

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部