摘要
针对快速动态系统对模型预测控制(MPC)的微型化和高实时性的需求,提出了一种MPC控制器的现场可编程门阵列(FPGA)硬件实现方法。MPC中的二次规划(QP)问题采用粒子群优化(PSO)算法进行求解。通过分析算法的特点,对算法计算步骤进行循环展开、流水线等优化处理,充分利用FPGA的硬件并行计算特性提高MPC的在线计算性能,最终得到MPC控制器的最优实现方案。最后以电子节气门的跟踪控制为例,在实验平台上进行了实时仿真实验,验证了基于FPGA硬件实现方法设计的MPC控制器的有效性和实时性。
Miniaturization and high computational performance are demanded when Model Predictive Control (MPC) is applied to fast dynamic system. In order to meet these requirements, a novel hardware implementation method for MPC on a Field Programmable Gate Array (FPGA) chip is proposed. The Particle Swarm Optimization (PSO) algorithm is employed to solve the Quadratic Programming (QP) problem formed in MPC. By analyzing the characteristics, the MPC algorithm is optimized by parallelism-loop unrolling and pipelining to obtain an optimal MPC controller. Real-time simulation tests of electronic throttle control are performed to verify the MPC controller. The results show that the proposed scheme can improve the computational performance of MPC.
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2014年第4期1042-1050,共9页
Journal of Jilin University:Engineering and Technology Edition
基金
国家自然科学基金重点项目(61034001)
'973'国家重点基础研究发展计划项目(2012CB821202)
教育部'长江学者和创新团队发展计划'创新团队项目(IRT1017)
吉林省科技发展计划重大专项项目(20116001)
关键词
自动控制技术
模型预测控制
粒子群优化
现场可编程门阵列
硬件实现
automatic control technology
model predictive control
particle swarm optimization
fieldprogrammable gate array
hardware implementation