摘要
利用随机拓扑度理论研究随机非线性凝聚算子,在一定条件下得到随机算子方程A(ω,x)=μx的随机解和随机算子不动点的存在性,所得结论减弱了已知文献中相应定理的条件.
Random condensing operators are studied by using random topological degree theory. Under some boundary conditions, we get the random solution for the random operator equation A(w,x)=μx and existence of random fixed points for the random operator. Our conclusion weaken conditions of the results in known literature.
出处
《应用泛函分析学报》
CSCD
2014年第2期150-153,共4页
Acta Analysis Functionalis Applicata
基金
山东省软科学研究计划(2010RKGA1053)
关键词
随机凝聚算子
随机拓扑度
随机算子方程
随机不动点
random condensing operator
random topological degree
random operator equation
random fixed point