期刊文献+

华南忍冬绿原酸和木犀草素生物合成关键酶基因表达分析 被引量:12

Analysis of critical genes expression of chlorogenic acid and luteolin biosyntheses in Lonicera confusa
原文传递
导出
摘要 通过对华南忍冬Lonicera confusa绿原酸、木犀草素生物合成关键酶基因进行组织特异性表达分析,阐明华南忍冬活性成分形成的分子调控机制。采用实时定量PCR分析方法分析绿原酸和木犀草素生物合成途径上的PAL,4CL,C4H,CHS,CHI,FNS,HQT基因家族成员在华南忍冬花蕾和叶中的表达情况。结果表明PAL1,C4H1,4CL1,CHS1,CHI3,HQT2在华南忍冬花蕾中的表达水平要低于叶,而PAL3,4CL2,CHI2,FNS2在花蕾中的表达水平要高于叶。推测华南忍冬PAL3,4CL2基因可能与绿原酸成分积累有关,同时PAL1,CHS1,CHI3,HQT2同源基因在华南忍冬花蕾和叶中的表达模式与忍冬不同,这为进一步研究忍冬与华南忍冬活性成分差异的遗传机制提供理论依据。 This study analysed the tissue specific expression of critical genes involved in chlorogenic acid and luteolin biosynthesis, for exploiting the molecular mechanism of components biosynthesis in Lonicera confusa. Expression of PAL, 4CL, C4H, CHS, CHI, FNS and HQT gene families of chlorogenic acid and luteolin biosynthesis-related genes in buds and leaves of L. confusa were analyed by Real-time PCR. Expressions of PAL1, G4H1, 4CL1, CHS1, CHI3 and HQT2 in buds were lower than that in leaves, and expressions of PAL3, 4CL2, CHI2 and FNS2 in buds were higher than that in leaves. The results indicated that that PAL3 and 4CL2 may be associated with accumulation of chlorogenic acid, and the expression patterns of PAL1, CHS1, CHI3 and HQT2 in buds and leaves of L. confusa were different with L. japonica. This study provided some theoretical basis for the further research on genetic mechanism of active components differences in L. confusa and L. japonica.
出处 《中国中药杂志》 CAS CSCD 北大核心 2014年第13期2469-2472,共4页 China Journal of Chinese Materia Medica
基金 国家自然科学基金项目(81373959 81001605) 中医药行业科研专项(201407003)
关键词 华南忍冬 绿原酸 木犀草素 关键酶基因 Lonicera confusa chlorogenic acids luteolin critical genes
  • 相关文献

参考文献17

  • 1梁远园,卢瑞琦,张言,肖国丽,李业荣,李国卫,桂蜀华.华南忍冬藤HPLC指纹图谱研究[J].中国实验方剂学杂志,2013,19(10):138-141. 被引量:1
  • 2郑亦文,马东来,陈敏珠.木犀草素对大鼠腹腔巨噬细胞释放H_20_2的影响[J].中国药理学通报,1990,6(1):56-58. 被引量:17
  • 3Lim D, Cho H, Kim J, et al. Luteolin decreases IGF-Ⅱ produc- tion and downregulates insulin-like growth factor-I receptor signa- ling in HT-29 human colon cancer cells[ J]. BMC Gastroenterol,2012,12:9.
  • 4Fraser C M, Chapple C. The phenylpmpanoid pathway in Arabi- dops/s[ J]. Arabidopsis Book, 2011,9 :e0152.
  • 5Vervefidis F, Trantas E, Douglas C, et al. Biotechnology of fla- vonoids and other phenylpropanoid-derived natural products. Part I: chemical diversity, impacts on plant biology and human health [J]. Biotechnol J, 2007, 2 (10): 1214.
  • 6Yuan Y, Wang Z Y, Jiang C, et al. Exploiting genes and func- tional diversity of chlorogenic acid and luteolin biosyntheses in Lonicera japonica and their substitutes[ J]. Gene, 2012,9:51.
  • 7Owens D K, Alerding A B, Crosby K C, et al. Functional analy- sis of a predicted flavonol synthase gene family in Arabidopsis [J]. Plant Physiol, 2008,147:1046.
  • 8Ancheol C, Myungho L, Shinwoo L, et al. Tomato phenylalanine ammania-lyase gene family, highly redundant but strongly unde- rutilized[J]. J Biol Chem, 2008, 283(48):33591.
  • 9Hu W J, Kawaoka A, Tsai C J, et al. Compartmentalized ex- pression of two structurally and functionally distinct 4-eoumarate : CoA ligase genes in aspen ( Populus tremuloides ) [ J ]. Proc Nail Acad Sci USA, 1998, 95(9) :5407.
  • 10Li Y, Ogita S, Keya C A, et al. Expression of caffeine biosyn- thesis genes in tea ( Camellia sinensis) [ J ]. Z Natufforsch C,2008,63 : 267.

二级参考文献29

共引文献43

同被引文献251

引证文献12

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部