期刊文献+

基于鲁棒稀疏表示的人脸识别算法 被引量:1

Face Recognition Based on Robust Sparse Representation
原文传递
导出
摘要 提出了一种基于LBP算子和鲁棒稀疏表示的人脸识别方法。首先,提取训练样本和测试样本的LBP特征。其次,在原有稀疏表示分类器(SRC)的基础上添加一个权值矩阵W来解决l1正则化最小二乘问题。最后,利用鲁棒稀疏表示分类器(RSRC)分类测试人脸图像所属类别。在AT&T人脸库上进行实验的结果表明,此方法是优于其他经典算法的。 This paper proposes a new face recognition method based on LBP operator and RSR (Robust Sparse Representation). Firstly, the LBP features of the training data and testing data are extracted. Secondly, on the basis of SRC, a weighted matrix W is added to solve a ll-regularized least square problem. Finally, RSRC is used to judge which class the face images belong to. Experimental results on AT&T database demonstrate the new method has very good performance and superior over other classical methods.
作者 曹振亮
出处 《电子技术(上海)》 2014年第6期1-3,共3页 Electronic Technology
关键词 人脸识别 LBP算子 稀疏表示 RSRC face recognition LBP operator sparse representation RSRC
  • 相关文献

参考文献6

  • 1Ahonen T, Hadid A, Pietik?inen M. Face description with local binary patterns: Application to face recognition[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006,28(12):2037-2041.
  • 2Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation[J]. IEEE rrans on Pattern Analysis and Machine Intelligence, 2009,31 (2): 210-227.
  • 3Liu Y N, Wu F, Zhang Z H, et al. Sparse representation using nonnegative curds and whey [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition 2010: 3578-3585.
  • 4Gao S H, Tsang I W H, Chia L T, et al. Local features are not lonely-laplacian sparse coding for image classification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2010: 3555-3561.
  • 5Zhang J, Jin R, Y. M. Yang Y M, et al. Modified logistic regression: An approximation to SVM and its applications in large-scale text categorization [C]//Proceedings of the Twentieth International Conference on Machine Learning, 2003: 888-895.
  • 6Yang J, Zhang D, Frangi A F, et al. Two-dimensional PCA: A new approach to appearance-based face representation and recognition[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部