期刊文献+

Symmetries and variational calculation of discrete Hamiltonian systems 被引量:1

Symmetries and variational calculation of discrete Hamiltonian systems
原文传递
导出
摘要 We present a numerical simulation method of Noether and Lie symmetries for discrete Hamiltonian systems. The Noether and Lie symmetries for the systems are proposed by investigating the invariance properties of discrete Lagrangian in phase space. The numerical calculations of a two-degree-of-freedom nonlinear harmonic oscillator show that the difference discrete variational method preserves the exactness and the invariant quantity. We present a numerical simulation method of Noether and Lie symmetries for discrete Hamiltonian systems. The Noether and Lie symmetries for the systems are proposed by investigating the invariance properties of discrete Lagrangian in phase space. The numerical calculations of a two-degree-of-freedom nonlinear harmonic oscillator show that the difference discrete variational method preserves the exactness and the invariant quantity.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期192-198,共7页 中国物理B(英文版)
基金 supported by the Key Program of National Natural Science Foundation of China(Grant No.11232009) the National Natural Science Foundation ofChina(Grant Nos.11072218,11272287,and 11102060) the Shanghai Leading Academic Discipline Project,China(Grant No.S30106) the Natural ScienceFoundation of Henan Province,China(Grant No.132300410051) the Educational Commission of Henan Province,China(Grant No.13A140224)
关键词 discrete Hamiltonian systems discrete variational integrators SYMMETRY conserved quantity discrete Hamiltonian systems, discrete variational integrators, symmetry, conserved quantity
  • 相关文献

参考文献36

  • 1Noether A E 1918 Math. Phys. KI. 2 235.
  • 2Djukic D D S and Vujanovic B D 1975 Acta Mech. 23 17.
  • 3Sarlet W and Cantrijn F 1981 SIAMRev. 23 467.
  • 4Lutzky M 1979 J. Phys. A: Math. Gen. 12 973.
  • 5Lutzky M 1979 Phys. Lett. A 72 86.
  • 6Mei F X 2000 J. Beijing Inst. Technol. 9 120.
  • 7Mei F X 1999 Applications of Lie Groups and Lie Algebras to Con- strained Mechanical Systems (Beijing: Science Press) (in Chinese).
  • 8Mei F X, Xu X J and Zhang Y F 2004 Acta Mech. Sin. 20 668.
  • 9Dorodnitsyn V 2011 Applications of Lie Groups to Difference Equa- tions (Boca Raton, FL: Chapman & Hall/CRC).
  • 10Logan J D 1973 Aequat. Math. 9 210.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部