期刊文献+

关于伪Riemann流形的极大子流形 被引量:5

On Maximal Submanifolds in Pseudo-Riemannian Manifolds
下载PDF
导出
摘要 在给出伪Riemann流形中一般等距浸入子流形的基本公式后,我们证明了极大类空子流形的一个广义Bernstein定理,并研究这种子流形的稳定性. Let Nnv be a pseudo-Riemannian n-manifold with index v, Mnμ an m(< n)-dimensional pseudo-Riemannian submanifold with index μ(≤v) in Nnv. If the mean curvature of Mmμ vanishes identically, then Mmμ is called an extremal submanifold. Particularly, an extremal submanifold in Nnv with μ=0 and m = n - v is called maximal spacelike submanifold. In this paper, main results are as follows. Theorem 1. Let Snv(c) denote an n-dimensional complete simply-connected pseudo-Riemannian manifold with index v and constant sectional curvature c. Then, for c≥0, any complete maximal spacelike submanifold in Snv(c) must be totally geodesic. Theorem 2. Let Nnv be a pseudo-Riemannian manifold with nonpositive sectional curvature. Then any maximal spacelike submanifold in Nnv is stable. Theorem 3. Let Nnv be a pseudo-Riemannian manifold with sectional curvature bounded from below by c0 and M a maximal spacelike submanifold in Nnv. Assume that D=M is a simply-connected compact domain with piecewise smooth boundary. If the restriction of the scalar curvature of M to D is less than (n-v)2c0-λ(D), where λ1(D) denotes the first Dirichlet eigenvalue of the Laplacian on D, then D is unstable.
作者 沈一兵
机构地区 杭州大学数学系
出处 《杭州大学学报(自然科学版)》 CSCD 1991年第4期371-376,共6页 Journal of Hangzhou University Natural Science Edition
基金 国家自然科学基金
关键词 伪黎曼流形 极大子流形 稳定性 pseudo-Riemannian manifold maximal submanifold generalized Bernstein theorem stability
  • 相关文献

参考文献2

  • 1Cheng S Y,Ann Math,1976年,104卷,407页
  • 2Yau S T,Pure Appl Math,1975年,28卷,201页

同被引文献18

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部