期刊文献+

四元数矩阵的行展开式与其行列式

The Row Expansion and Determinant of Quaternion Matrix
下载PDF
导出
摘要 在注意到由谢邦杰定义的四元数矩阵的行展开式与陈龙玄定义的四元数矩阵的行列式之间联系与差异的基础上,给出了一个新的自共轭矩阵的行列式的展开定理,由此可得到四元数矩阵逆的新的显示公式及Cramer解式. On the basis of relation and distinguish between the row expansion and determinant of quaternion matrix, which are respectively defined by Xie Bangjie and Chen Longxuan, a new expansion theorem about the determinant of self conjugate matrix was given, therefore, the new explict formula and Cramer solving expression of quaternion matrix's inverse were derived.
出处 《北华大学学报(自然科学版)》 CAS 2001年第2期104-111,共8页 Journal of Beihua University(Natural Science)
关键词 四元数矩阵 行展开式 行列式 自共轭矩阵 重行列式 逆矩阵 显示公式 Vramer解式 Row expansion of quaternion matrix Determinant of quaternion matrix Self conjugate Mutiple determinant Explict formula of inverse matrix Cramer solving expression
  • 相关文献

参考文献4

  • 1[6]Chen Longxuan. Definition of Determinant and Cramer Solutions over the Quaternion Field[J]. Acta Mathematica Sinica,New Series, 1991,7(2) :171~180.
  • 2[14]Nathan Jacobson. Basic Algebra Ⅰ [ M]. W.H. :Freeman and Company, 1974.95~ 97.
  • 3[15]Fu Zhenzhang. Quaternions and Matrices of Quaternions[J]. Linear Algebra Appl., 1997,252:21~ 57.
  • 4[20]R.A. Horn, C. R. Johnson. Matrix Analysis[M]. New York: Cambridge University Press, 1985.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部