期刊文献+

一类微分差分方程的周期解和全局吸引性

EXISTENCE AND GLOBAL ATTRAC-TIVITY OF PERIODIC SOLUTIONS TO A CLASS OF DIFFERENTIAL DIFFERENCE EQUATIONS
下载PDF
导出
摘要 讨论一类微分差分方程 x(t) =gradG(x(t) ) +f(t,x(t-r) )的周期解问题 ,其中x(t) =(x1(t) ,… ,xn(t) ) T 是n维连续向量 ,G(x)为连续可微函数 ,r>0 ,f(t,x)是n维连续向量函数 ,且f(t+ω ,x) =f(t,x) ,ω>0。利用重合度理论中的延拓定理并构造Lyapunov泛函得到了周期解的存在性和全局吸引性定理。改进并扩充了文 [3]的有关结果。 The problem of periodic solutions to the following differential difference equations = grad G(x(t))+f(t,x(t-r)) was discussed,where x(t)=(x 1(t),…,x n(t)) T was continuous vector, G(x) was a continuous differential function, f(t,x) was continuous vector function,and f(t+ω,x)=f(t,x),ω>0,r>0 .By using continuation theorem in coincidence degree theory and constructing Lyapunov functional,some theorems on the existence and global attractivity of periodic solutions were obtained.These results in this paper improved and enlarged related result in [3].
出处 《常德师范学院学报(自然科学版)》 2001年第1期9-12,共4页 Journal of Changde Teachers University
关键词 微分差分方程 延拓定理 周期解 重合度理论 全局吸引性 Lyapunol泛函 连续可微函数 differential difference equations periodic solution coincidence degree global attractivity
  • 相关文献

参考文献8

二级参考文献9

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部