摘要
工程中接触问题普遍存在;经典的数学工具解决接触问题可以得到精确解,但适用范围有限.本文采用一种数值计算法罚函数法,从优化的角度求解接触问题.通过将接触边界的互不嵌入条件引入系统总势能;弹性接触的约束变分问题转化为优化问题.并进一步推导出了罚优化法的有限元迭代控制方程,给出了求解过程,并讨论了罚困子的选取,通过算例验证了该方法的有效性.
Contact problems are common in engineering. Classical mathematics tools can get exact solution in solving contact problems but be finite to use. A numerical method, penalty function method, isutilized to solve contact problems in optimized point of view in this article. Elastic contact problems of restrictedvariation are transformed into optimized problems as the non-penetration condition of contact boundary is introduced in the total potential energy of the system. Furthemore, iterative control equations of penalty optimizedmethod are deduced and the solving process is given. At last, a example proves the validity.
出处
《河北工业大学学报》
CAS
1999年第6期76-80,共5页
Journal of Hebei University of Technology
关键词
弹性力学
接触问题
罚函数
罚优化
有限元法
互不嵌入条件
Elastic mechanics, Contact problems, Penalty function, Penalty optimization, FEM,Non-penetration condition