期刊文献+

遥感图象中波谱混迭象元分离方法的研究 被引量:2

Investigation of a Method for Separating Spectral Overlap Pixels in Remote Sensing Images
下载PDF
导出
摘要 提出用层次神经网络模型来解决遥感图象中波谱混迭象元的分离问题 ,即所谓的“同谱异构”问题 .该模型由两级或多级神经网络级联而成 ,第一级神经网络主要用于波谱非混迭象元的分类 ,采用带一个稳含层的BP网络 ,输入节点数目等于输入波段向量的维数 ,输出节点数目等于期望类别数 ;第二级和后续层次的神经网络用于波谱混迭象元的分离 ,也采用只有一个稳含层的BP网络 ,其输入节点数目仍然等于波谱向量的维数 ,输出节点数目等于形成该混迭波谱的类别数 .该模型可以高度精确地分离出波谱混迭的象元 . Separating spectral overlap pixels in remote sensing images is a difficult problem known as “Different Land Covers with Same Spectrum”. A hierarchical neural network model is presented to solve the problem, which consists of two or more levels of cascaded neural networks. The first-level neural network is mainly used for classifying spectral non-mixed pixels, using a BP neural network with one hidden layer. Its input node number is equal to the number of spectral bands and its output node number is equal to the number of the expected classes. The second or the higher levels of neural networks are used for separating the spectral overlap pixels, also using a BP neural network with one hidden layer. Its input node number is the same as the number in the first-level network and its output node number is equal to the number of the overlap classes. This model can separate spectral mixed pixels with very high accuracy.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2001年第2期189-196,共8页 JUSTC
基金 "九五"国家科技攻关项目! (96 80 2 0 1 0 5 0 4)
关键词 遥感图象分类 神经网络模型 波谱混迭象元分离 classification of remote sensing image neural network model separating spectral overlap pixels
  • 相关文献

参考文献5

二级参考文献4

  • 1靳文戟,环境遥感,1995年,10卷,4期
  • 2刘政凯,微型计算机数字图象处理技术,1991年
  • 3郭德方,遥感图象的计算机处理和模式识别,1987年
  • 4李厚强,IEEE IGARSS’93

共引文献14

同被引文献4

  • 1Christopher J C Burges . A Tutorial on Support Vector Machines for Pattern Recognition[M]. Kluwer Academic Publishers, Boston .
  • 2Lothar Hermes et al , Support Vector Machines for Land Usage Classificationin Lands.at TM Imagery[J]. Proc. of IEEE International Geoscience and Remote Sensing Symposium. 1999, (1):348- 350.
  • 3V Vapnik. The Nature of Statistical, Learning Theory[ M]. New York: Springer Verlag, 1995.
  • 4边肇祺 张学工.模式识别[M].北京:清华大学出版社,2001..

引证文献2

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部