期刊文献+

Winkler地基上变厚度自由矩形板固有频率的Galerkin解法 被引量:2

On Natural Frequency of Varying Thickness Rectangular Plate with Four Free Edges on Winkler Elastic Foundation by the Method of Galerkin
下载PDF
导出
摘要 采用挠度试函数 ,给出用Galerkin法求解Winkler弹性地基上四边自由的变厚度矩形板的自振频率方程和算式。 By means of the deflection function in document ,the formula for natural frequency of varying thickness rectangular plate with four free edges on Winkler elastic foundation are presented in the paper by the method of Galerkin,which is more effective for engineering calculation than others.
出处 《青海大学学报(自然科学版)》 2001年第2期4-5,27,共3页 Journal of Qinghai University(Natural Science)
关键词 Winkler弹性地基 变厚度矩形板 GALERKIN法 固有频率 土木工程 Winkler elastic foundation,varying thickness rectangular plate, method of Galerkin,natural frequency
  • 相关文献

参考文献3

  • 1余水丰 夏永旭 等.变厚度桥台搭板的加权残数法[J].西安公路交通大学学报,1997,17:381-384.
  • 2张福范.弹性薄析[M].北京:科学出版社,1984.130-133.
  • 3梁兴复 曲庆璋.弹性地基上正交异性自由矩形板问题.第四届全国岩土力学数值与解析分析讨论会论文集[M].武汉:武汉测绘大学出版社,1991.106-108.

同被引文献26

  • 1盛宏玉,高荣誉.一种改进的Pasternak地基模型及层合地基板的解析解[J].土木工程学报,2006,39(1):87-91. 被引量:8
  • 2袁鸿,李善倾,刘人怀.Pasternak地基上简支板振动问题的准格林函数方法[J].应用数学和力学,2007,28(7):757-762. 被引量:12
  • 3王忠民,冯振宇.线性变厚度矩形薄板自由振动的精确解[J].应用力学学报,1997,14(2):114-120. 被引量:6
  • 4Leissa A W. NASA SP-160 vibration of plates[M]. Washing D C US Government Printing Office, 1969.
  • 5Bhat R B, Laura P AA, Gutierrez R G, et al. Numerical experiments on the determination of natural frequencies of transverse vibrations of rectangular plates of non-uniform thickness[J]. Journal of Sound and Vibration, 1990, 138(2): 205-219.
  • 6Kukreti A R, Farsa J, Bert C W. Differential quadrature and Rayleigh-Ritz methods to determine the fundamental frequencies of simply supported rectangular plates with linearly varying thickness[J]. Journal of Sound and Vibration, 1996, 189(1): 103-122.
  • 7Sakiyama T, Huang M. Free vibration analysis of rectangular plates with variable thickness[J]. Journal of Sound and Vibration, 1998, 216(3): 379-397.
  • 8Akiyama K, Kuroda M. Fundamental frequencies of rectangular plates with linearly varying thickness[J]. Journal of Sound andVibration, 1997, 205(3)~ 380-384.
  • 9Bellman R E, Casti J. Differential quadrature and long-term integration[J]. Journal of Mathematical Analysis and Applications, 1971, 34(2): 235-238.
  • 10Bellman R E, Casti J, Kashef B G. Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations[J]. Journal of Computational Physics, 1972, 10(1): 40-52.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部