期刊文献+

一类数字混沌保密语音通信系统的保密性能分析 被引量:3

Analysis on Security of a Secure Speech Communication System Based on Digital Chaos
下载PDF
导出
摘要 分析了一类数字混沌保密语音通信系统在回归映射攻击、相空间重构攻击、泄密攻击下的保密性能,实验和仿真表明基于数字混沌的保密语音通信系统比基于连续流混沌的保密语音通信系统有更强的保密性能.最后,提出了分时映射多刀开关及同时多映射复合的高维混沌等,以进一步提高保密性能. Analysis on security of a secure speech communication system based on digital chaos is given, which is attacked through regression maps and phase space reconstructing and so on. Experimental and simu- lative results turn out the security of communication systems based on digital chaos is better than that based on continuous flow chaos. In the end, time-sharing maps and contemporary multi-maps mised and piecewise non- linear maps are presented to enhancing security.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2001年第3期287-292,共6页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金资助课题(No.69772041)
关键词 数字混沌 保密通信 保密性 回归映射 相空间重构 语音通信系统 高维混沌 digital chaos secure communication security regression maps phase space reconstructing
  • 相关文献

参考文献5

二级参考文献3

共引文献46

同被引文献17

  • 1Kevin M Short. Signal Extraction From Chaotic Communications [J]. IJBC, 1997, 7(7): 1579~1584.
  • 2Halle K S, Wu C W. Spread Spectrum Communication through Modulation of Chaos[J]. Int. J.Bifureation & Chaos,1993, 3(2): 469~477.
  • 3Nikoai F, Rulkov,etc. Digital Communication Using Chaotic-Pulse-Position Modulation [J]. IEEE Trans-Circuits Syst. 2001, 48(12): 1436~1444.
  • 4NRF401 Product Specification [M]. Nordic VLSI ASA,2000. 5.
  • 5方锦清.驾驭混沌与发展高新技术[M].北京:原子能出版社,2001
  • 6Pecora L M,Carroll T L.Synchronization in chaotic systems[J].Phys Rev Lett,1990,64(8):821-824
  • 7Zhang J M,Wang S Q.A chaos scheme for secure communication based on neural network[C].IEEE APCCAS 2000,2000:371-374
  • 8GRASSI G, MASCOLO S. Nonlinear observer design to synchronize hypechaotic systems via a scalar signal[J]. IEEE Transactions on Circuits and Systems, 1997, 44(10): 1101 - 1104.
  • 9YANG S X. On observability of 3D continuous-time autonomous chaotic systems based on scalar output measurement[J]. International Journal of Bifurcation and Chaos, 2002, 12(5): 1159 - 1162.
  • 10LU J H, CHEN G R, CHENG D Z, et al. Bridge the gap between the Lorenz system and the Chen system[J]. International Journal of Bifurcation and Chaos, 2002, 12(12): 2917 - 2926.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部