期刊文献+

PCB数控钻孔最佳走刀路线的建模与求解 被引量:11

Modeling and Solving Optimal Moving Path for NC Drilling of PCB
下载PDF
导出
摘要 目前 ,采用 PCB数控钻自动编程系统生成的钻孔路线并非最佳走刀路线 .通过分析 ,将 PCB数控钻孔最佳走刀路线问题归结为大型 TSP问题 ,其目标函数定为钻头的总走刀时间最短 .由于 TSP问题在理论上属于 NP完备问题 ,因此很难用一般的算法求解 .文中详细介绍了用模拟退火方法求解该问题的具体算法 ,并以此为基础开发了 Up to now, the generation of drilling path by automatic programming system for printed circuit boards (PCB) did not give optimal solution. The problem of optimizing the moving path of NC drilling for PCB can be formulated as a large scale travelling salesman problem (TSP), and the goal function is defined as the shortest total time of moving drill. Because TSP is known to be a NP\|complete problem, it would be too difficult to tackle it with traditional optimization methods. In this paper, an algorithm of solving TSP for PCB by simulated annealing is presented in detail. Based on the research, an optimal automatic programming system for PCB is developed.
作者 王霄 刘会霞
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2001年第7期590-593,共4页 Journal of Computer-Aided Design & Computer Graphics
关键词 PCB 印刷电路板 数控钻孔 最佳走刀路线 建模 PCB, optimal moving path, TSP, Simulated Annealing(SA)
  • 相关文献

参考文献6

  • 1[1]S Kirkpatrick, et al. Optimization by simulated annealing. Science, 1983, 220(4598):671-680
  • 2[2]Conley W C. Programming an automated punch or drill. International Journal of Systems Science, 1991, 22(11):2039-2056
  • 3[3]J D litke. An improved solution to the traveling salesman problem with thousands of nodes. Communications of the ACM, 1984, 2(12):1227-1236
  • 4[4]Vangelis F Magirou. The efficient drilling of printed circuit boards. Interfaces, 1988, 16(4):13-23
  • 5[5]Surya Danusaputro, et al. An efficient algorithm for drilling printed circuit boards. Computers and Industrial Engineering, 1990, 18(2):145-151
  • 6[6]Szykman S, Cagan J. A simulated annealing-based approach to three-dimensional component packing. Transaction of the ASME, 1995, 117(3):308-314

同被引文献48

引证文献11

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部