期刊文献+

φ频繁闭项目挖掘问题及其算法 被引量:3

The Problem of φ-Frequency Closed Itemset Mining and Its Algorithm
下载PDF
导出
摘要 关联规则挖掘问题是数据挖掘领域一个重要的研究方向 ,φ 关联规则挖掘问题是它的一种推广形式。利用闭项目集的思想 ,提出了 φ 频繁闭项目挖掘问题。它是 φ 关联规则挖掘问题的一种替代 ,并给出了一种有效的挖掘算法 ,有效解决 φ Association rule mining is an important research area in data mining, and φ association rule mining is one of its generalizations. Based on closed itemset, a problem of ((frequent closed itemset is studied, which is a substitute of the problem of φ association rule mining. Also, a mining algorithm is presented, which can efficiently solve the problem of generating too many rules in φ association rule mining.
出处 《西南交通大学学报》 EI CSCD 北大核心 2001年第3期225-228,共4页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助!(6 0 0 740 14)
关键词 数据库 数据处理 ψ-频繁闭项目集 关联规则 数据挖掘 databases data processing φ frequent closed itemset association rule data mining
  • 相关文献

参考文献5

  • 1Li T R,MLFL 2000,2000年,124页
  • 2Han J,Proc ACMSIGMOD Conference on Management Data,2000年,1页
  • 3Pei J,Proc of 2000 ACMSIGMOD Int Workshop on Data Mining and Knowledge Discovery,2000年,11页
  • 4Han J,IEEE Transactionson Knowledgeand Data Engineering,1999年,11卷,5期,1页
  • 5Park J,SIGMOD'95,1995年,175页

同被引文献32

  • 1杨延娇,王治和.异常数据挖掘在Web服务器日志文件中的应用[J].西北师范大学学报(自然科学版),2008,44(6):32-34. 被引量:4
  • 2佟为明,李凤阁,孙凡金,苗立杰,程树康.NetLinx开放网络关键技术研究[J].哈尔滨工业大学学报,2004,36(10):1328-1330. 被引量:12
  • 3[1]Agrawal R, Scrikant R. Fast algorithm for mining association rules [ A ]. VLDB'94 [ C ]. Los Angeles: Morgan Kaufmann,1994: 487-499.
  • 4[3]Toivonen H. Pruning and grouping discovered association rules[A]. ECML'95[C]. Berlin: Springer-Verlag, 1995: 47-52.
  • 5[4]Liu B, Hu M, Hsu W. Multi-level organization and summarization of the discovered rules [ A]. SIGKDD'00 [ C ]. New York:ACM Press, 2000: 91-100.
  • 6[5]Ng R, Lakshmanan L, Han J, et al. Exploratory mining and pruning optimizations of constrained associations rules [ A ].SIGMOD'98[C]. New York: ACM Press, 1998: 13-24.
  • 7[6]Pei J, Han J, Mao R. CLOSET: An efficient algorithm for mining frequent closed itemsets [ A ]. ACM-SIGMOD'00 [ C ],New York: ACM Press, 2000: 11-20.
  • 8[7]Dong G, Li J. Interestingness of discovered association rules in terms of neighborhood-based unexpectedness [ A]. PAKDD'98 [C]. Berlin: Springer-Verlag, 1998: 72-86.
  • 9Agrawl R,Srikant R.Fast algorithm for mining association rules[A].1994 Int Conf Very Large Data Base (VLDB'94)[C].Santiage,Chile,1994.487-499.
  • 10Han J,Dong G,Yin Y.Efficient mining of partial periodic patterns in time series database[A].1999 Int Conf Data Engineering (ICDE 99)[C].Sydney:IEEE Press,1999.106-115.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部