期刊文献+

一类集值映射的半闭性及不动点的弱收敛

Demiclosendess Principle of a Class of Multi-valued Mappings and Weak Convergence of the Fixed Point
下载PDF
导出
摘要 讨论了一类集值映射的半闭性及不动点的弱收敛性 ,得到以下结论 :若X为满足局部一致Opial条件的Banach空间 ,T为X中非空弱紧凸子集上的连续集值渐近非扩张映射 ,则I -T在点 0是半闭的 .本文还分别讨论了满足局部一致Opial条件和满足一致Opial条件的Banach空间中这类映射的不动点的弱收敛 ,从而把单值渐近非扩张映射情形推广到集值渐近非扩张映射情形 . This paper discusses the demiclosedness principle and weak convergence of the multi_valued asymptotically non_expansive mappings. It reaches the conclusion that if T is the continuous multi_valued asymptotically non_expansive mapping on the nonempty weakly compact convex subset of a Banach space satisfying the locally uniform Opial condition, then I-T is demiclosed at zero. The weak convergence of the fixed point of multi_valued asymptotically non_expansive mappings on the nonempty weakly compact convex subset of a Banach space satisfying locally uniform Opial condition or uniform Opial condition is also discussed. Some results of asymptotically non_expansive mappings are generalized.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2001年第7期5-8,共4页 Journal of South China University of Technology(Natural Science Edition)
关键词 集值映射 Banach空间 非扩张映射 半闭式 弱收敛性 不动点 OPIAL条件 multi_valued mapping Banach space non_expansive mapping demiclosedness convergence
  • 相关文献

参考文献1

二级参考文献1

  • 1傅红卓,华南理工大学学报,1993年,21卷,2期,11页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部