期刊文献+

一元Laplace分布的L_1-范估计的无偏性 被引量:1

The Unbiasedness of L_1 Estimation of Monistic Laplace Distribution
下载PDF
导出
摘要 根据Laplace分布的概率密度函数公式 ,推导了中位数的概率密度 。 L 1 estimation is often used to process surveying data containing gross errors or abnormal values,it is a method of robust estimation.It is proved that L 1 estimation can resist disturbances of gross errors and its parameter MLE value is median of observed values. To the problem of unbiasedness of L 1 estimation,basing on uniqueness of solution,Zhou Shijiang proved it according to dual theorem of linear programming; and Wang Zhizhong proved it according to probability statistics theorem by using the method from special to general; also,basing on error distribution theorem and probability statistics theorem,the authors proved it.First,we deprived probability density of median closely according to probability density formula of Laplace distribution,from general to special; then we proved the unbiasedness of L 1 estimation according to probability density of median. When n is odd number,our reasoning thoughts are: (1) we rearrange observed values,big or small. (2) we deprive probability density of subsample according to probability density function of Laplace distribution. (3) we deprive probability density of median according to probability density of subsample. (4) we proved the unbiasedness of L 1 estimation according to probability density of median. Finally,we draw the conclusions: (1) L 1 estimation is unbiased estimation,and this conclusion shows L 1 estimation has good statistical characteristic. (2) the conclusion drawn by this method is same as that deprived from dual theorem of linear programming in reference [2] ,but,this conclusion is deprived from probability statistical theorem,it is simple and accepted easily. (3) this reasoning method can enlighten us to prove the unbiasedness of L p estimation.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2001年第4期361-363,共3页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目 (40 0 740 0 3)
关键词 中位数 概率密度 LAPLACE分布 L1-范估计 粗差 异常值 观测数据 median unbiasedness probability density
  • 相关文献

参考文献13

  • 1黄维彬.近代平差理论及其应用[M].解放军出版社,1990..
  • 2孙海燕.P-范分布理论及其在测量数据处理中的应用:博士论文[M].武汉:武汉测绘科技大学,1995..
  • 3周江文 欧吉坤 等.测量误差理论初探[M].北京:地震出版社,1999.110-119.
  • 4殴自强.一次范数最小平差的统计性质[J].测绘学报,1990,19(4):283-289. 被引量:3
  • 5於宗俦,孙海燕,陈之中.关于p-范最小解的存在性与唯一性的讨论[J].测绘学报,1997,26(4):322-327. 被引量:2
  • 6周世健.一次范数最小估计的无偏性[J].解放军测绘学院学报,1998,15(4).
  • 7王志忠.L_1估计的分布及统计性质[J].测绘工程,1998,7(2):22-27. 被引量:3
  • 8周江文,测量误差理论初探,1999年,110页
  • 9周世健,郑州测绘学院学报,1998年,4期,215页
  • 10周江文,抗差最玄乘法,1997年,25-28,71-75页

二级参考文献10

  • 1周世健.观测误差的p分布与估计准则[J].测绘学报,1995,24(2):73-79. 被引量:19
  • 2李德仁,误差处理和可靠性理论,1988年
  • 3王松桂,数学进展,1985年,14卷,3期
  • 4李庆海,概率统计原理和在测量中的应用,1982年
  • 5叶耕中,应用数学与计算数学学报,1981年,6期
  • 6魏宗舒,统计学数学方法,1966年
  • 7孙海燕,博士学位论文,1995年
  • 8於宗俦,测量平差原理,1990年
  • 9卢忠政,运筹学,1988年
  • 10王松桂.线性模型参数估计的新进展[J]数学进展,1985(03).

共引文献13

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部