摘要
对于可展 Bézier曲面 ,当设计曲线和伴随曲线分别在两个平行平面上 ,且分别为二、三次Bézier曲线时 ,得到了这两条曲线控制顶点之间的几何位置关系 ,从而给出了相应的 (2 ,3 )次可展Bézier曲面和合成可展曲面的几何构造方法 ,还讨论了匹配函数系数对于伴随曲线几何性态的影响。
In manufacturing, when a surface is developable, its manufacture or processing becomes much easier. Bézier surface is frequently employed in computer aided manufacturing and engineers are naturally interested in finding those Bézier surfaces that are developable. In section 1, we discuss how to construct developable Bézier surface of degree (2,3) and give proof that the surface so constructed is indeed developable; we also discuss how to use control points to facilitate the design of developable Bézier surface of degree (2,3).
出处
《西北工业大学学报》
EI
CAS
CSCD
北大核心
2001年第3期465-467,共3页
Journal of Northwestern Polytechnical University