期刊文献+

基于模糊PID控制的人工腿位置伺服系统设计与仿真 被引量:2

Design and simulation of servo system for intelligent artificial legs based on fuzzy PID control
下载PDF
导出
摘要 智能人工腿是机器人学和生物医学工程学领域一个备受关注的研究课题 ,以前研制的智能人工腿 ,其汽缸内针阀开度的控制都是采用步进电机所构成的开环系统 ,位置精度不高。在本文中 ,我们将设计一个具有位置和速度反馈的闭环控制系统并引入基于 Fuzzy推理的整顿 PID控制策略 ,以提高控制系统的智能性、鲁棒性、快速性和准确性。本文首先概述了智能人工腿的控制原理和 TMS32 0 F2 40数字信号处理器 (DSP)的主要特点 ,其次设计了一种基于 Fuzzy PID的直流电机位置伺服控制系统的结构 ,最后对该位置伺服系统进行了计算机仿真。结果表明 ,本文所提出的设计方法是正确、可行的 ,可以有效地用于智能人工腿的行走控制。 Intelligent artificial leg has been an interesting research project in the fields of robotics and biomedical engineering,For the past years, the controoller used for controlling the turndown ratio of needleplug valve of an air cylinder in these legs is an openloop system composed of a stepping motor,and has lower position precision.In this paper, we will design a closedloop control system with position and velocity feedback and adopt fuzzy PID control strategy so as to raise the intelligent behavior, robustness, response speed, and accuracy of this control system. First,we give introductions to the control principle of intelligent artificial legs and main characteristics of TMs320F240 digital signal processor(DSP),and then propose a system structure for position servo control of intelligent artificial legs based on TS320F240.The result of computer simulation to this control system indicates that the design method proposed here is correct and can be used effectively to control the walking movements of intelligent artificial legs.
出处 《计算技术与自动化》 2001年第3期53-58,共6页 Computing Technology and Automation
基金 中国科学院机器人学开放研究实验室基金资助项目 (RL2 0 0 0 0 2)
关键词 智能人工腿 数字信号处理器 位置伺服控制系统 仿真 模糊PID控制 intelligent artificial leg digital signal processor(DSP) position servo system fuzzy control strategy
  • 相关文献

参考文献2

二级参考文献8

  • 1[1]Gailey R S et al. The Effects of Prosthesis Mass on Metabolic Cost of Ambulation in Non-vascular Trans-tibial Amputees. Prosthetics and Orthotics International, 1997,21:9-16
  • 2[9]Postema K et al. Energy Storage and Release of Prosthetic Feet. Part 1: Biomechanical Analysis Related to User Benefits. Prosthetics ad Orthotics International, 1997, 21:17-27.
  • 3[10]Multiaxial Dynamic Response Foot. Journal of Prosthetics and Orthotics, 1998,10(1):29A
  • 4[13]Datta D, Howitt J. Conventional Versus Microchip Controlled Pneumatic Swing Phase Control for Trans-femoral Amputees: User's verdict. Prosthetics and Orthotics International, 1998, 22:129-135
  • 5[15]Kirker S et al. An Assessment of the Intellignet Knee Prosthesis. Clinical Rehabilitation, 1996,10:267-273
  • 6[16]Dingwell J B et al. Use of an Anstrumented Treadmill for Real-time Gait Symmetry Evaluation and Feedback in Normal and Trans-tibial Amputee Subjects. Prosthetics and Orthotics International, 1996,20:101-110
  • 7[17]Pitkin M R. Synthesis of a Cycloidal Mechanism of the Prosthetic Ankle. Prosthetics and Orthotics International, 1996,20:159-171
  • 8[18]Blumentritt S. A New Biomechanical Method for Determination of Static Prosthetic Alignment. Prosthetics and Orthotics International, 1997,21:107-113

共引文献43

同被引文献13

  • 1王俊红,傅泽田,王秀,祁力钧.基于AT89C52单片机的变量喷雾控制器设计[J].微计算机信息,2006(03Z):8-10. 被引量:25
  • 2[2]Hata N, Hori Y. Basic research on power limb using gait information of able-side leg [J]. とバイオサイバネテイックス,2001, 101(406) :540-545.
  • 3[3]Jonkers I, Spaepen A, Papaioannou G, et al. An EMG-based,muscle driven forward simulation of single support phase of gait [J]. Journal of Biomechanics,2002,35(5):609-619.
  • 4[6]Bogdan M, Franke M, Rosenstiel W. Real time processing of nerve signals for controlling an artificial hand [A]. Proceedings of the lASTED International Conference on Applied Informatics, Symposium 1[C]. 2001 :137-141.
  • 5[8]Dario Farina,Roberto Merletti,Marisa Nazzaro,et al. Effect of joint angle on EMG variables in leg and thigh muscles [J].IEEE Engineering in Medicine and Biology,2001 ,20(6) :62-71.
  • 6[9]Kalanovic V D,Popvic D, Skaug N T. Feedback error learning neural network for trans-femoral prosthesis [J]. IEEE Trans on Rehabilitation Engineering, 2000,8 ( 1 ) : 71-80.
  • 7[10]Minor A, Gonzalez C A, Leijia L. Low frequency envelopes analysis approach to regulate EMG A/K prosthesis [A]. Proceedings of 19th International Conference[C]. 1997. 12781316.
  • 8张海虹,蔡立羽,王志中.基于高阶神经网络的肌电信号识别方法的改进[J].中国康复医学杂志,2000,15(1):34-37. 被引量:7
  • 9张瑞红,王人成,金德闻,张济川.人体下肢表面肌电信号的检测与分析[J].清华大学学报(自然科学版),2000,40(8):73-76. 被引量:16
  • 10雷敏,王志中.肌电假肢控制中的表面肌电信号的研究进展与展望[J].中国医疗器械杂志,2001,25(3):156-160. 被引量:37

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部