期刊文献+

利用函数级数展开法求解Paul阱中射频源的倍频效应

Solve the effects of double frequency of trap field by function series expansion
下载PDF
导出
摘要 采用函数级数展开法精确求解了在非理想射频源、考虑二次谐波Mathieu方程的解 。 The effect of double frequency of trap field =U-V 1 cos Ωt-V 2 cos 2Ωt in Paul trap can be described exactly by using a function series expansion to solve corresponding Mathieu equation. Some physically meaningful results are shown.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2001年第4期442-444,共3页 Journal of Atomic and Molecular Physics
基金 国家自然科学基金资助项目 (批准号 1990 40 13和 1990 40 14 )
关键词 倍频效应 PAUL阱 函数级数展开法 射频源 囚禁离子 Effect of double frequency Function series expansion Paul trap
  • 相关文献

参考文献7

  • 1[1]Electromagnetic traps for charged and neutral particles[J]. W.Pa ul, Rev. Mod. Phys., 1990, 62:531.
  • 2[2]Laser cooling to the zero-point energy mition[J]. F.Diedrich et al., Phys. Rev. Lett., 1989, 62:403; A "Schrdinger Cat” superposition sta te of an atom[J]. C.Monroe et al., Science 1996, 272:1 131; Speed of ion-t rap quantum-information processors[J]. A. Steane et al., Phys. Rev. 2000, A62, 042305; Quantum copying can increase the practically available information [J]. P. Deuar and W. J. Munro. Phys. Rev. 2000, A62, 042304; Phase space analy sis of the ion cloud in the senond stability region of the Paul trap[J]. J. B. Wand and X. Z. Wen, Int, J. Mass spectrom Proc. 1993, 124:89.
  • 3[3]Quantum theory of particle motion in a rapidly oscillating field[J]. R. J. Cook et al., Phys. Rev. 1985, 31:564.
  • 4[4]Radiofrequency spectroscopy of stored ions[J]. J. G. Dehmelt, Adv. At. M ol. Phys., 1967, 3:53.
  • 5[5]Quantum jumps in a single ion[J]. Th. Sauter et al., Physica. S cripta., 1988, T22:128; Sideband cooling of ions in radiofrequency[J]. E. Peik et al., Phys. Rev., 1999, A60:439.
  • 6[6]D. Halford et al., Precessings of 20th Annual Symposium on Frequ ency Control[C]. April, 1968, 340.
  • 7[7]Exact solution for the motion of a particle in Paul trap[J]. M. Feng, et al., Phys. Lett., 1995, A197:135; Quantum theory of the stability region of an ion in a Paul trap[J]. K. L. Wang., et al., Phys. Rev. 1995, A52:1 4 19.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部