摘要
根据拉氏变换的性质 ,用拉氏变换来解几种特殊的微分方程、卷积型积分方程以及微分方程组 ,进而讨论了传递函数的激励和响应 ,其方法是先取拉氏变换把微分方程或积分方程化为象函数的代数方程 ,根据该代数方程求出象函数 ,然后再取逆变换就得出原来微分方程或积分方程的解 .
Several special differential equations, convolution integration equations and differential systems are solved by applying the property of Laplace transformation. The excitation and the response of transfer function are discussed. The method is that first the algebraic equation of image function is derived from the differential equation or integration equation by using the Laplace transformation, and the image function can be solved on the basis of the algebraic equation. Then the solution of the original differential equation or the integration equation can be solved by using the inverse transformation.
出处
《吉林化工学院学报》
CAS
2001年第2期69-72,共4页
Journal of Jilin Institute of Chemical Technology
基金
中国科学院兰州化学物理研究所资助项目
关键词
卷积
拉氏变换
拉氏逆变换
传递函数
激励
响应
convolution
Laplace transformation
inverse Laplace transformation
transfer function
excitation
response