摘要
本文讨论双周期胞腔中含任意形状孔洞的不同材料弹性平面焊接的第二基本问题.引进函数ρ1(z)=∑’{ρ/(z-ρ)2-2z(ρ/ρ3)-ρ/ρ2},构造了推广的变换,将这类弹性平面问题归结为求解正则型的奇异积分方程,最后证明了其解的存在和唯一.所用方法简单、直观,而且由于是构造性的,因而有利于具体的数值求解.
The plane welding problem of different isotropic materials with a doubly periodic set of holes of arbitrary shape is very useful in rock mechanics, concrete mechanics and solid mechanics. In this paper, the second fundamental problem is investigated. We have extended Sherman' s transform under some general restrictions. The problem is reduced to certain singular intergral equation, the existence and uniqueness of the solution of which is established. Because the method is structual, therefore, it is of benefitial for numerical solution
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
1991年第4期538-544,共7页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金