期刊文献+

基于Volterra级数模型的非线性系统的鲁棒自适应辨识 被引量:6

Robust Adaptive Identification for Nonlinear System Based on Volterra Series Model
下载PDF
导出
摘要 研究了基于Volterra模型的非线性系统的鲁棒自适应辨识问题 .针对Volterra系统辨识时输入输出观测数据均受噪声污染的情况 ,建立了基于Volterra模型的鲁棒Volterra总体均方最小自适应辨识算法 .该算法应用梯度下降原理 ,通过对梯度的修正 ,有效地提高了算法的鲁棒性 .仿真结果表明 ,在低信噪比 ,或使用较大学习因子的情况下 ,该算法的收敛性能明显优于其他算法 ,便于实际应用 . Adaptive identification for nonlinear Volterra system is researched. In allusion to the Volterra system identification in which the input and output signals are all corrupted by noise, a robust Volterra total least mean square adaptive identification algorithm is presented based on Volterra series model. This algorithm is established according to the steepest descent principle, and its robust performance is effectively improved by modifying gradient. The simulation results show that the convergence performance of the presented algorithm is better than those of other algorithms when signal-noise-ratio (SNR) is lower, or a larger learning factor is used. This new algorithm could be used in actual application.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2001年第10期1024-1028,共5页 Journal of Xi'an Jiaotong University
基金 陕西省重点科技项目 (2 0 0 0K0 8-G6 )
关键词 非线性系统 自适应辨识 Volterra总体均方误差 总体最小二乘 Volterra级数模型 鲁棒性 Adaptive algorithms Convergence of numerical methods Least squares approximations Mathematical models Robustness (control systems)
  • 相关文献

参考文献5

  • 1韩崇昭,王立琦,唐晓泉,党映农.一类非线性动态系统的非参数GFRF 模型辨识(英文)[J].控制理论与应用,1999,16(6):816-819. 被引量:36
  • 2Widrow B 等 韩崇昭等(译).自适应逆控制[M].西安:西安交通大学出版社,2000..
  • 3韩崇昭(译),自适应逆控制,2000年
  • 4Zhao X,Math Comput Model,1998年,27卷,5期,37页
  • 5Xu L,Neural Networks,1992年,5卷,3期,441页

二级参考文献2

  • 1Ching Hsiang Tseng,IEEE Trans Signal Processing,1997年,45卷,4期,1013页
  • 2Cho Y S,IEEE Trans Signal Processing,1992年,40卷,5期,1029页

共引文献35

同被引文献39

  • 1邱天,丁艳军,吴占松.基于主元分析的故障可检测性的统计指标比较[J].清华大学学报(自然科学版),2006,46(8):1447-1450. 被引量:17
  • 2焦李成.非线性系统故障诊断的伏尔泰拉泛函理论[J].西安交通大学学报,1988,22(3):79-85.
  • 3D Z Feng, Z Bao and L C Jiao, Total least mean squares algorithm [J]. IEEE Trans. on Signal Processing, 1998,46(8): 2122-2130.
  • 4F L. Luo, R Unbehauen and A Cichocki. A minor component analysis algorithm [J]. Neural Networks, 1997,10(2): 291-297.
  • 5S. Ouyang, Z. Bao and G. liao Adaptive step-size minorcomponent extraction algorithm [J]. ELECTRONICSLETFERS, 1999, 35(18): 443-444.
  • 6Shan Ouyang, Zheng Bao, and EC. Ching Adaptive Minor Component Extraction With Modular Structure [J].IEEE Trans On Signal Processing, 2001, 49(9):2127-2137.
  • 7Cirrincione Giansalvo, Cirrincione Maurizio. The MCA EXIN Neuron for the Minor Component Analysis[J].IEEE Trans On Neural Networks, 2002, 13(1): 160-187.
  • 8S Haykin. Adaptive filter theory [M]. Englewood Cliffs,NJ: Prentice Hall, 1991.
  • 9G. Strang, Linear Algebra and Its Applications[M]. New York: Academic Press, 1980, Section 6.4.
  • 10Schetzen M. The Volterra and Wiener Theories of Nonlinear Systems[M]. New York: Wiley, 1980.

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部