期刊文献+

δ-冲击模型及其最优更换策略 被引量:12

δ-Shock Model and the Optimal Replacement Policy
下载PDF
导出
摘要 讨论了一种特殊的冲击模型———δ冲击模型 ,在Poisson冲击流下 ,给出了单部件系统的一些可靠性指标 :系统可靠度函数和首次故障前平均时间 .进一步 ,假定系统是可修的 ,逐次故障后的维修时间构成随机递增的几何过程 ,而逐次维修后的系统性能指标成比例劣化 ,相应系统工作时间是按一定方式随机递减 .我们以系统故障次数N为策略 ,以长期运行单位时间内的期望费用为目标函数 ,导出了目标函数的解析表达式C(N) ,并通过最小化目标函数C(N) ,找到几何维修下可靠性系统的最优更换策略N . A special kind of shock model named δ -shock model is studied. The reliability function and the mean time to first failure of the system under δ -shock model are deduced. Furthermore, we assume that the system is repairable, but the system cannot be 'as good as new' after repair. The successive survival time of the system after repair decrease stochastically, while the consecutive repair time of the system constitute an increasing geometric process. The problem is to determine the optimal replacement policy N * such that the long-run average cost per unit time is minimized. The explicit expression of the long-run average cost per unit time C(N) is derived, and the corresponding optimal replacement policy N * can be determined analytically or numerically.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2001年第5期121-124,共4页 Journal of Southeast University:Natural Science Edition
关键词 Δ-冲击模型 可靠度函 几何过程 最优更换策略 可靠性 系统故障 目标函数 寿命分布 shock model reliability function geometric process renewal process replacement policy
  • 相关文献

参考文献3

二级参考文献2

  • 1李泽慧.与Poisson流有关的几个概率分布及其在城市交通拥挤问题中的应用[J].兰州大学学报:自然科学版,1984,20:127-136.
  • 2李泽慧,兰州大学学报,1984年,20卷,数学专辑,127页

共引文献42

同被引文献56

  • 1陈宪章,汪定伟,刘崇.冲击型负荷下的生产存储模型研究[J].管理科学学报,2004,7(4):33-39. 被引量:4
  • 2李泽慧,白建明,孔新兵.冲击模型的研究进展[J].质量与可靠性,2005(3):31-36. 被引量:5
  • 3徐怀,唐玲.复合泊松过程的可加性[J].大学数学,2006,22(6):114-117. 被引量:10
  • 4南京工学院数学教研组.积分变换 (第3版)[M].高等教育出版社,1989..
  • 5Barlow, R.E. and Proschan, F., Statistical Theory of Reliability and Life Testing, Hot, Rinehart and Winston, Inc., New York, 1975.
  • 6Shanthilumar, J.G. and Sumita, U., General shock models associated with correlated renewal sequences, J. of Appl. Prob., 20(1983), 600-614.
  • 7Shanthilumar, J.G. and Sumita, U., Distrubution properties of the system failure time in a general shock model, Adv. Appl. Prob., 16(1984), 363-377.
  • 8Wang, G.J. and Zhang, Y.L., A shock model with two-type failures and optimal replacement policy, International Journal of Systems Science, 36(4)(2005), 209-214.
  • 9Kontoleon, J.M., Reliability determination of a r-successive-out-of-n: F system, IEEE Transactions on Reliability, 29(1980), 437-440.
  • 10Zhang, Y.L. and Lain, Y., Reliability of consecutive-k-out-of-n: G repairable system, International Journal of Systems Science, 29(12)(1998), 1375-1379.

引证文献12

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部