期刊文献+

一种具有强分类能力的离散HMM训练算法 被引量:6

An Algorithm with Strong Classifying Ability for Discrete HMM Training
下载PDF
导出
摘要 提出了一种具有强分类能力的离散 HMM(hidden Markov models)训练算法 .该算法利用矢量量化技术将来自不同话者的训练数据进行混合训练 ,以生成包含各个话者特征的话者特征图案 .用该特征图案代替经典的离散 HMM中的 VQ码本 ,可以提高观察值符号序列的模式辨识能力 ,从而提高了离散 HMM的分类能力 .给出了该方法用于文本有关的话者识别的实验结果 ,表明该算法可提高系统的识别性能 ,并要降低 HMM对训练集大小的依赖程度 ,且识别时计算量明显小于经典 HMM训练算法 。 A discrete\|HMM training algorithm which has strong ability of pattern classification is presented in this paper. By VQ (vector quantization) technique, this algorithm trains data from all speakers in mixed mode to generate the speaker characteristic pattern, which includes features of all speakers. By substituting the VQ code\|book in conventional discrete\|HMM with characteristic pattern, the ability of pattern classification for observation symbol sequence is enhanced, therefore the classifying ability of discrete\|HMM is improved. The experimental results show that the algorithm can improve the system's recognition performance, and reduce the dependence extent of HMM on the scale of training set. Moreover, the calculation quantum of this algorithm in recognition stage is obviously less than that of conventional HMM training algorithm, therefore it has higher practical value.
出处 《软件学报》 EI CSCD 北大核心 2001年第10期1540-1543,共4页 Journal of Software
基金 国家自然科学基金资助项目 (6 9872 0 36 )~~
关键词 分类能力 矢量量化 鲁棒性 语音信号处理 离散HMM训练算法 discrete hidden Markov model classifying ability characteristic pattern vector quantization robustness
  • 相关文献

参考文献3

  • 1[1]Bourlard, H., Wellekens, C.J. Links between Markov models and multi-layer perceptron. IEEE Transactions PAMI, 1990,12(12):1167~1178.
  • 2[2]Cerf, P.L., Maa, W., Compernolle, D.V. Multilayer perceptrons as labelers for hidden markov models. IEEE Transactions on SAP, 1994,2(1):185~193.
  • 3[3]Visarut, Ahkuputra, Somchai, Jitapunkul. A comparison of Thai speech recognition systems using hidden Markov model, neural network, and fuzzy-neural network. In: Proceedings of the ICSLP'98. Sydney, Australia, 1998. 283~287.

同被引文献42

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部