摘要
作者引入 I(L)值完全下半连续映射 ,研究其性质。利用 I(L)值完全下半连续映射定义I(L)值完全诱导空间 ,给出 I(L)值完全诱导空间的拓扑基的表达形式 ,证得两个 I(L)值完全诱导空间的映射是连续映射的充分必要条件 ,并建立了乘积空间的 I(L)值完全诱导空间与 I(L)
In this paper, we introduce and study the concept of I(L) valued completely lower semi continuous mappings; we define the I(L) valued completely induced topological spaces by using I(L) valued completely lower semi continuous mapping, give the base of I(L) valued completely induced topological space, study continuous mapping between two I(L) valued completely induced topological spaces and establish the conection between I(L) valued completely induced topological spaces of productive space and the productive space of I(L) valued completely induced topological spaces.
出处
《青岛海洋大学学报(自然科学版)》
CSCD
北大核心
2001年第6期960-964,共5页
Journal of Ocean University of Qingdao
基金
山东省自然科学基金 ( Q99A0 2 )资助
关键词
正则开集
半正则拓扑空间
I(L)值完全下半连续映射
I(L)值完全诱导空间
Topology
Regularly open set
Semi regular topological space
I(L) valued completely lower semi continuous mapping
I(L) valued completely induced topological space