期刊文献+

淹水土壤中Se(Ⅵ)还原反应的机理及条件 被引量:1

Mechanism and condition of Se(Ⅵ) reduction in flooded soils
下载PDF
导出
摘要 通过红黄泥和紫潮泥两种土壤淹水培养和硒的价态测定结果表明 :在 45 0mV培养下 ,外加Se(Ⅵ )第 1天有 5 7 2 %仍保持Se(Ⅵ ) ,2 3 4%还原为有机Se ,培养过程中Se(Ⅵ )呈稳定态 ,有机Se则氧化成Se(Ⅵ ) ,反应为准一级动力学方程 ;在 175mV培养下 ,外加Se(Ⅵ )第 1天有 81 8%还原为有机Se ,8 9%为Se(Ⅵ ) ,培养过程中有机Se呈稳定态 ,Se(Ⅵ )则还原为Se(Ⅳ ) ,反应符合动力学一级方程 .土壤中Se(Ⅵ ) Se(Ⅳ )体系氧化还原反应的临界电位为 71 4mV— 2 0 6 1mV(pH7 0 ) ,土壤pH上升 1个单位 ,电位相应降低 40 1mV .Se(Ⅵ ) Se(Ⅳ )体系在土壤氧化还原顺序中的反应次序居锰体系之后 。 Two soils, red soil and alluvial soil, with added Se were flooded for 24 days, samples were taken at various time intervals and analyzed the Se species.The Results showed that under higher redox potential ( E h=450?mV), 57 2% of the added Se (Ⅵ) remained un\|changed, and 23 4% converted to organic form at the first day. Then the organic Se was oxidized into Se(Ⅵ),which followed pseudo first order kinetics. Under lower redox potential ( E h=175?mV), 81 8% of the added Se(Ⅵ) converted to stable organic Se, and only 8 9% remained Se (Ⅵ) at the first day; then Se (Ⅵ) was reduced to Se(Ⅳ) which followed first order kinetics. The critical redox potential of Se(Ⅵ)/ Se(Ⅳ) varied from 71 4 ?mV to 206 1 ?mV. Redox potential decreased 40 1 ?mV with every unit increase in pH. The reduction of Se(Ⅵ) to Se(Ⅳ) followed the reduction of MnO 2, and paralleled that of Fe(Ⅲ)
出处 《环境科学学报》 CAS CSCD 北大核心 2001年第6期742-747,共6页 Acta Scientiae Circumstantiae
基金 国家自然科学基金资助项目 (批准号 :396 70 42 4)
关键词 土壤 氧化还原电位 淹水 机理条件 土壤监测 Soil selenium redox potential
  • 相关文献

参考文献8

  • 1杨志辉,葛旦之,熊远复.淹水条件下土壤有效硒变化规律的初步研究[J].土壤通报,1998,29(4):182-184. 被引量:7
  • 2王子键 彭安.环境样品中硒形态分析方法研究[J].分析化学,1988,16(7):644-646.
  • 3薛家骅.物理化学[M].北京:农业出版社,1991.137-145.
  • 4李庆逵,中国水稻土,1992年,208页
  • 5Sposito G,SSSAJ,1991年,55卷,6期,1597页
  • 6薛家骅,物理化学,1991年,137页
  • 7王子键,分析化学,1988年,16卷,7期,644页
  • 8于天仁,水稻土的物理化学,1983年,1页

二级参考文献2

共引文献7

同被引文献18

  • 1兰叶青,毛景东,计维浓.土壤中硒的形态[J].环境科学,1994,15(4):56-58. 被引量:21
  • 2李艳慧,李恋卿,潘根兴,廖启林,吴新民.江苏宜兴地区农田土壤硒含量变异及其影响因素[J].生态与农村环境学报,2006,22(3):61-64. 被引量:8
  • 3侯军宁.硒的土壤化学研究进展[J].土壤学进展,1987,(1):10-19.
  • 4Stadtman T C. Selenium-dependent enzymes. Annual Reviews Biochemistry, 1980, 49 : 93-110.
  • 5Roetruck J T,Pope A L. Selenium: Biochemical role as a component of glutathione peroxidase. Science, 1973, 179:588.
  • 6Zhang L H, Shi W M, Wang X C,et al. Genotypic Difference in selenium accumulation in rice seedlings and correlation with selenium content in brown rice. J. Plant Nutrition,2006, 29 (9) : 1601-1618.
  • 7Ulrich J M, Shrift A. Selenium absorption by excised astragalus roots. Plant Physiol. , 1968, 43 : 14-20.
  • 8Shrift A, Ulrich J M. Transport of selenate and selenite into Astragalus roots. Plant Physiol. , 1969, 44:893-896.
  • 9Asher C J, Butler G W, Feterson P J. Selenium transport in root systems of tomato. J. Exp. Bot. , 1977, 23:279-291.
  • 10Arvy M P. Some factors influencing the uptake and distribution of selenite in the bean plant (phaseolus vulgaris). Plant and Soil, 1989, 117:129-133.

引证文献1

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部