期刊文献+

改进的增量式关联规则维护算法 被引量:4

An Improved Incremental Algorithm for Maintaining Discovered Association Rules
原文传递
导出
摘要 在分析现有的关联规则算法 IUA的基础上 ,指出了该算法的不足和错误之处 ,并加以改正 ,进而提出了一种改进的增量式更新算法 EIUA. EIUA算法解决了在数据库 D不变的情况下 ,当最小支持度和最小置信度二阈值发生变化时如何高效更新关联规则的问题 . Mining association rules are a major aspect of data mining research, and maintaining discovered association rules are of equal importance. In this thesis, we analyze a previously proposed algorithm IUA and point out its disadvantages and errors and manage to correct these errors. Furthermore we have proposed an improved incremental maintaining algorithm EIUA. Assuming that database \$D\$ is not updated, EIUA has solved the problem of how to maintain discovered association rules efficiently when the two thresholds, minimum support and confidence, change. The experiments have shown the availability and superiority of the new algorithm.
作者 陈丽 陈根才
出处 《系统工程理论与实践》 EI CSCD 北大核心 2001年第11期14-19,共6页 Systems Engineering-Theory & Practice
关键词 关联规则 增量式维护 频繁项目集 数据库 算法 数据挖掘 association rules minimum support incremental maintaining large itemsets
  • 相关文献

参考文献5

  • 1冯玉才,冯剑琳.关联规则的增量式更新算法[J].软件学报,1998,9(4):301-306. 被引量:227
  • 2David W Cheung,Proc the Fifth Int Conference on Database Systemsfor Advanced Applications,1997年
  • 3David W Cheung,Proc 12th Int Conf Data Engineering,1996年
  • 4Park J S,Proc 1995 Int Conferece on Information and Knowledge Management,1995年
  • 5Han J,Proc Int Conf VLDB,1995年

共引文献226

同被引文献51

  • 1管力学,施润身.基于矩阵与图的关联规则挖掘[J].计算机与现代化,2005(1):16-18. 被引量:5
  • 2何典,宋中山,刘济波.基于用户访问记录的Web挖掘研究[J].计算机系统应用,2007,16(4):57-60. 被引量:4
  • 3Agrawal R, Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Databases [ A ]. Proceedings of the ACM SIGMOD International Conference on Management of Data[ C ]. NewYork : ACM Press, 1993:207 - 216.
  • 4顾庆锋,宋顺林.Apriori算法在SQL中的改进与应用[J].计算机工程与设计,2007,28(13):3060-3062. 被引量:5
  • 5Hong T,Lin K,Chien B.Mining Fuzzy Multiple-level Association Rules from Quantiative Data[J].Applied Intelligence,2003,(18):79-90.
  • 6Wille R.Restructuring Lattice Theory:An Approach Based on Hierarchies of Concepts[C].Rival I(ed).Ordered Sets,Dordecht D Reidel Publishing Company,1982.445-470.
  • 7Missaoui R,Godin R.Extracting Exact and Approxiamte Ruler from Databases[A].A lagar V S,Bergler S,Dong F Q(Eds)[M].Incompleteness and Uncertainty in Information Systems[C].London:Springer-Verlag,1994.209-222.
  • 8Pasquier N,Bastide Y,et al.Discovering Frequent Closed Itemsets for Association Rules[C].Beeri C,et al,eds.the 7th Int'l.Conf.on Database Theory,Jerusalem:Springer-Verlag,1999.398-416.
  • 9Pei J,Han J,Mao R.CLOSET:An Efficient Algorithm for Mining Frequent Closed Itemsets[C].Gunopulos D,et al,eds.the 2000 ACM SIGMOD Int'l.Workshop on DMKD,Dallas:ACM Press,2000.21-30.
  • 10Wang J,Han J,Pei J.CLOSET+:Searching for the Best Strategies for Mining Frequent Closed Itemsets[C].2003 ACM SIGKDD conference,Washington D.C.2003.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部