摘要
本文研究了一种正交多项式混沌全局建模方法 ,所用正交多项式集以吸引子不变测度为核 .通过对H啨non映射数据和电离层参数实测数据的分析 ,表明在待建模系统不很复杂时 (其内在机理可用较低阶多项式表达 ) ,这种全局建模方法能得到系统动力学特性 .在低噪声情况下模型还能充分精确地重构系统方程式 .在噪声较大或系统内在机理很复杂时建模结果仍可用于一步预测 。
In this article,we study a chaotic global modeling method based on a set of polynomials defined on the attractor's invariant measure as its kernel.Through analysis of Hénon map data and observed data of ionospheric parameters,it is shown that if the underlying system is simple enough to be represented by low order polynomials,this method can capture the dynamics of the system.Also,when the noise level is low,we can acquire the equation of the system.When noise level is higher or the system is more complex,we still can use the reconstructed model to perform one step prediction in a fairly good fashion.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2002年第1期76-78,共3页
Acta Electronica Sinica
基金
国家自然科学基金 (No .60 0 72 0 0 1 )
关键词
混沌
全局建模
正交多项式
chaos
global modeling
invariant measure of attractors
orthogonal polynomials
ionosphere