期刊文献+

关于一类二阶双曲型微分方程的柯西问题

The Cauchy Problem for a Hyperbolic Equation of Second Order
下载PDF
导出
摘要 研究了一类二阶双曲型微分方程     vxx-h( x,y) k( y) vyy+ a( x,y) vx+ b( x,y) vy+ c( x,y) v+ f ( x,y) =0的柯西问题解的存在性 .现在采用较为初等的方法 ,即通过构造积分方程的逼近解序列 ,把这个问题转化为一个积分方程组问题 ,然后再利用归纳法和迭代法 ,证明这类二阶双曲型微分方程在一定条件下的柯西问题有解且可导 。 Deals with the Cauchy problem for a hyperbolic equation of second order v xx -h(x,y)k(y)v yy +a(x,y)v x+b(x,y)v y+c(x,y)v+f(x,y)=0. The equation was made a breakthrough in form,and primary methods have been quoted.First,the problem was tramstorm into a system of integral equations through structuring a pressing alignment,and then prove that the problem has differentiable solution under some conditions by using the iteration method.The expression with integral equations is given.
出处 《河北师范大学学报(自然科学版)》 CAS 2001年第4期432-435,437,共5页 Journal of Hebei Normal University:Natural Science
基金 河北省自然科学基金资助项目 ( 19815 5 )
关键词 双曲型微分方程 柯西问题 特征线 逼近解序列 归纳法 迭代法 积分表达式 hyperbolic equation Cauchy problem characteristic curves
  • 相关文献

参考文献3

  • 1FRANKL F. On Cauchy's problem forpartial differential equations of the mixed elliptic-hyperbolic type with initial data onthe parabolic line [J]. Bull Acad Sci Urss Ser Math,1944, (8):195-224.
  • 2BEREZIN S. On Cauchy's problem for linear equations of the second order withinitial conditions on parabolic line[J]. Mat Sbornik, 1949,24 : 301-302.
  • 3BERS L. On the condition of potential gas flow across the sonic line [J]. N A C ATechnical Note, 1950,2 058:162-171.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部