摘要
在超空间中 ,有着各种不同的收敛概念 ,并且半序关系也是多种多样的 ,因此 ,实数理论中的单调收敛定理与夹逼定理在超空间中就有多种不同的表达形式 .现在就 X是 Banach空间与 Banach格 2种情况给出了超空间中的夹逼定理与单调收敛定理 。
There are various concepts of convergence and various semiorder relations in superspaces.So the monotonicity theorem and approximation theorem in the theory of mathematics analysis have various representation styles in superspaces.When X is a Banach space or a Banach lattice,approximation theorems and monotonicity theorems are studied in the superspace P f(X) , These theorems extend the earlier results.
出处
《河北师范大学学报(自然科学版)》
CAS
2001年第4期438-440,共3页
Journal of Hebei Normal University:Natural Science